» Articles » PMID: 35948564

MTORC1 Controls Golgi Architecture and Vesicle Secretion by Phosphorylation of SCYL1

Abstract

The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1.

Citing Articles

Hypoxia-induced conversion of sensory Schwann cells into repair cells is regulated by HDAC8.

Hertzog N, Duman M, Bochud M, Brugger-Verdon V, Gerhards M, Schon F Nat Commun. 2025; 16(1):515.

PMID: 39779705 PMC: 11711395. DOI: 10.1038/s41467-025-55835-9.


Submicron immunoglobulin particles exhibit FcγRII-dependent toxicity linked to autophagy in TNFα-stimulated endothelial cells.

Hollis W, Farooq S, Khoshi M, Patel M, Karnaukhova E, Eller N Cell Mol Life Sci. 2024; 81(1):376.

PMID: 39212707 PMC: 11364738. DOI: 10.1007/s00018-024-05342-9.


Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles.

Ataman M, Mittal N, Tintignac L, Schmidt A, Ham D, Gonzalez A Commun Biol. 2024; 7(1):974.

PMID: 39127848 PMC: 11316767. DOI: 10.1038/s42003-024-06679-4.


Acute Kidney Injury by Ischemia/Reperfusion and Extracellular Vesicles.

Norgard M, Svenningsen P Int J Mol Sci. 2023; 24(20).

PMID: 37894994 PMC: 10607034. DOI: 10.3390/ijms242015312.


Contaminants from dredged sediments alter the transcriptome of Manila clam and induce shifts in microbiota composition.

Bernardini I, Quagliariello A, Peruzza L, Martino M, Dalla Rovere G, Iori S BMC Biol. 2023; 21(1):234.

PMID: 37880625 PMC: 10601118. DOI: 10.1186/s12915-023-01741-9.


References
1.
Amano G, Matsuzaki S, Mori Y, Miyoshi K, Han S, Shikada S . SCYL1 arginine methylation by PRMT1 is essential for neurite outgrowth via Golgi morphogenesis. Mol Biol Cell. 2020; 31(18):1963-1973. PMC: 7543066. DOI: 10.1091/mbc.E20-02-0100. View

2.
Baietti M, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A . Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012; 14(7):677-85. DOI: 10.1038/ncb2502. View

3.
Lu C, Qin L, Liu H, Candas D, Fan M, Li J . Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect. PLoS One. 2015; 10(3):e0121046. PMC: 4373728. DOI: 10.1371/journal.pone.0121046. View

4.
Andreu Z, Yanez-Mo M . Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014; 5:442. PMC: 4165315. DOI: 10.3389/fimmu.2014.00442. View

5.
Tyanova S, Temu T, Cox J . The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016; 11(12):2301-2319. DOI: 10.1038/nprot.2016.136. View