» Articles » PMID: 27278775

Global, Quantitative and Dynamic Mapping of Protein Subcellular Localization

Overview
Journal Elife
Specialty Biology
Date 2016 Jun 10
PMID 27278775
Citations 296
Authors
Affiliations
Soon will be listed here.
Abstract

Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.

Citing Articles

The DEAD-box helicase eIF4A1/2 acts as RNA chaperone during mitotic exit enabling chromatin decondensation.

Juhlen R, Wiesmann S, Scheufen A, Stausberg T, Braun I, Strobel C Nat Commun. 2025; 16(1):2434.

PMID: 40069174 PMC: 11897408. DOI: 10.1038/s41467-025-57592-1.


EndoMAP.v1, a Structural Protein Complex Landscape of Human Endosomes.

Gonzalez-Lozano M, Schmid E, Whelan E, Jiang Y, Paulo J, Walter J bioRxiv. 2025; .

PMID: 39975243 PMC: 11839024. DOI: 10.1101/2025.02.07.636106.


Uncovering proteome variations and concomitant quality changes of different drying methods by 4D-DIA structural proteomics.

Xiao M, Tang C, Wang T, He M, Li Y, Li X Front Nutr. 2025; 12:1463780.

PMID: 39973924 PMC: 11835701. DOI: 10.3389/fnut.2025.1463780.


PEBP1 amplifies mitochondrial dysfunction-induced integrated stress response.

Cheng L, Meliala I, Kong Y, Chen J, Proud C, Bjorklund M Elife. 2025; 13.

PMID: 39878441 PMC: 11778924. DOI: 10.7554/eLife.102852.


Global cellular proteo-lipidomic profiling of diverse lysosomal storage disease mutants using nMOST.

Kraus F, He Y, Swarup S, Overmyer K, Jiang Y, Brenner J Sci Adv. 2025; 11(4):eadu5787.

PMID: 39841834 PMC: 11753374. DOI: 10.1126/sciadv.adu5787.


References
1.
Plotnikov A, Zehorai E, Procaccia S, Seger R . The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta. 2010; 1813(9):1619-33. DOI: 10.1016/j.bbamcr.2010.12.012. View

2.
Christoforou A, Mulvey C, Breckels L, Geladaki A, Hurrell T, Hayward P . A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun. 2016; 7:8992. PMC: 4729960. DOI: 10.1038/ncomms9992. View

3.
Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A . The quantitative proteome of a human cell line. Mol Syst Biol. 2011; 7:549. PMC: 3261713. DOI: 10.1038/msb.2011.82. View

4.
Dunkley T, Watson R, Griffin J, Dupree P, Lilley K . Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics. 2004; 3(11):1128-34. DOI: 10.1074/mcp.T400009-MCP200. View

5.
Deeb S, Tyanova S, Hummel M, Schmidt-Supprian M, Cox J, Mann M . Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles. Mol Cell Proteomics. 2015; 14(11):2947-60. PMC: 4638038. DOI: 10.1074/mcp.M115.050245. View