» Articles » PMID: 35927234

Interaction Between Transcribing RNA Polymerase and Topoisomerase I Prevents R-loop Formation in E. Coli

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Aug 4
PMID 35927234
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial topoisomerase I (TopoI) removes excessive negative supercoiling and is thought to relax DNA molecules during transcription, replication and other processes. Using ChIP-Seq, we show that TopoI of Escherichia coli (EcTopoI) is colocalized, genome-wide, with transcribing RNA polymerase (RNAP). Treatment with transcription elongation inhibitor rifampicin leads to EcTopoI relocation to promoter regions, where RNAP also accumulates. When a 14 kDa RNAP-binding EcTopoI C-terminal domain (CTD) is overexpressed, colocalization of EcTopoI and RNAP along the transcription units is reduced. Pull-down experiments directly show that the two enzymes interact in vivo. Using ChIP-Seq and Topo-Seq, we demonstrate that EcTopoI is enriched upstream (within up to 12-15 kb) of highly-active transcription units, indicating that EcTopoI relaxes negative supercoiling generated by transcription. Uncoupling of the RNAP:EcTopoI interaction by either overexpression of EcTopoI competitor (CTD or inactive EcTopoI Y319F mutant) or deletion of EcTopoI domains involved in the interaction is toxic for cells and leads to excessive negative plasmid supercoiling. Moreover, uncoupling of the RNAP:EcTopoI interaction leads to R-loops accumulation genome-wide, indicating that this interaction is required for prevention of R-loops formation.

Citing Articles

Gene syntax defines supercoiling-mediated transcriptional feedback.

Johnstone C, Love K, Kabaria S, Jones R, Jones R, Blanch-Asensio A bioRxiv. 2025; .

PMID: 39868195 PMC: 11760390. DOI: 10.1101/2025.01.19.633652.


A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts.

Meng X, Hu G, Li X, Gao C, Song W, Wei W Nat Commun. 2025; 16(1):31.

PMID: 39747058 PMC: 11695965. DOI: 10.1038/s41467-024-55502-5.


The SWIB domain-containing DNA topoisomerase I of mediates DNA relaxation.

Shen L, Diggs C, Ferdous S, Santos A, Wolf N, Terrebonne A bioRxiv. 2024; .

PMID: 39677648 PMC: 11642884. DOI: 10.1101/2024.12.03.626651.


Highly sensitive mapping of in vitro type II topoisomerase DNA cleavage sites with SHAN-seq.

Morgan I, McKie S, Kim R, Seol Y, Xu J, Harami G Nucleic Acids Res. 2024; 52(16):9777-9787.

PMID: 39106172 PMC: 11381365. DOI: 10.1093/nar/gkae638.


Spatio-temporal organization of the chromosome from base to cellular length scales.

Royzenblat S, Freddolino L EcoSal Plus. 2024; 12(1):eesp00012022.

PMID: 38864557 PMC: 11636183. DOI: 10.1128/ecosalplus.esp-0001-2022.


References
1.
Postow L, Crisona N, Peter B, Hardy C, Cozzarelli N . Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci U S A. 2001; 98(15):8219-26. PMC: 37424. DOI: 10.1073/pnas.111006998. View

2.
Dorman C . DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol Cell Biol. 2019; 20(1):26. PMC: 6639932. DOI: 10.1186/s12860-019-0211-6. View

3.
Wang X, Montero Llopis P, Rudner D . Organization and segregation of bacterial chromosomes. Nat Rev Genet. 2013; 14(3):191-203. PMC: 3869393. DOI: 10.1038/nrg3375. View

4.
Saha R, Lou Z, Meng L, Harshey R . Transposable prophage Mu is organized as a stable chromosomal domain of E. coli. PLoS Genet. 2013; 9(11):e1003902. PMC: 3820752. DOI: 10.1371/journal.pgen.1003902. View

5.
Menzel R, Gellert M . Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell. 1983; 34(1):105-13. DOI: 10.1016/0092-8674(83)90140-x. View