» Articles » PMID: 35916483

Chronic Muscle Recordings Reveal Recovery of Forelimb Function in Spinal Injured Female Rats After Cortical Epidural Stimulation Combined with Rehabilitation and Chondroitinase ABC

Overview
Journal J Neurosci Res
Specialty Neurology
Date 2022 Aug 2
PMID 35916483
Authors
Affiliations
Soon will be listed here.
Abstract

Cervical level spinal cord injury (SCI) can severely impact upper limb muscle function, which is typically assessed in the clinic using electromyography (EMG). Here, we established novel preclinical methodology for EMG assessments of muscle function after SCI in awake freely moving animals. Adult female rats were implanted with EMG recording electrodes in bicep muscles and received bilateral cervical (C7) contusion injuries. Forelimb muscle activity was assessed by recording maximum voluntary contractions during a grip strength task and cortical motor evoked potentials in the biceps. We demonstrate that longitudinal recordings of muscle activity in the same animal are feasible over a chronic post-injury time course and provide a sensitive method for revealing post-injury changes in muscle activity. This methodology was utilized to investigate recovery of muscle function after a novel combination therapy. Cervical contused animals received intraspinal injections of a neuroplasticity-promoting agent (lentiviral-chondroitinase ABC) plus 11 weeks of cortical epidural electrical stimulation (3 h daily, 5 days/week) and behavioral rehabilitation (15 min daily, 5 days/week). Longitudinal monitoring of voluntary and evoked muscle activity revealed significantly increased muscle activity and upper limb dexterity with the combination treatment, compared to a single treatment or no treatment. Retrograde mapping of motor neurons innervating the biceps showed a predominant distribution across spinal segments C5-C8, indicating that treatment effects were likely due to neuroplastic changes in a mixture of intact and injured motor neurons. Thus, longitudinal assessments of muscle function after SCI correlate with skilled reach and grasp performance and reveal functional benefits of a novel combination therapy.

Citing Articles

Combinatorial therapies for spinal cord injury repair.

Sousa C, Monteiro A, Salgado A, Silva N Neural Regen Res. 2024; 20(5):1293-1308.

PMID: 38845223 PMC: 11624878. DOI: 10.4103/NRR.NRR-D-24-00061.


Do Pharmacological Treatments Act in Collaboration with Rehabilitation in Spinal Cord Injury Treatment? A Review of Preclinical Studies.

Tashiro S, Shibata S, Nagoshi N, Zhang L, Yamada S, Tsuji T Cells. 2024; 13(5.

PMID: 38474376 PMC: 10931131. DOI: 10.3390/cells13050412.


Chronic muscle recordings reveal recovery of forelimb function in spinal injured female rats after cortical epidural stimulation combined with rehabilitation and chondroitinase ABC.

Sinopoulou E, Barroso Spejo A, Roopnarine N, Burnside E, Bartus K, de Winter F J Neurosci Res. 2022; 100(11):2055-2076.

PMID: 35916483 PMC: 9544922. DOI: 10.1002/jnr.25111.

References
1.
Garcia-Alias G, Fawcett J . Training and anti-CSPG combination therapy for spinal cord injury. Exp Neurol. 2011; 235(1):26-32. DOI: 10.1016/j.expneurol.2011.09.009. View

2.
Sriraman A, Oishi T, Madhavan S . Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Res. 2014; 1581:23-9. PMC: 4166556. DOI: 10.1016/j.brainres.2014.07.021. View

3.
Sayenko D, Angeli C, Harkema S, Edgerton V, Gerasimenko Y . Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J Neurophysiol. 2013; 111(5):1088-99. PMC: 3949232. DOI: 10.1152/jn.00489.2013. View

4.
Anderson K . Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2005; 21(10):1371-83. DOI: 10.1089/neu.2004.21.1371. View

5.
Fuhrmann T, Anandakumaran P, Payne S, Pakulska M, Varga B, Nagy A . Combined delivery of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue repair in an animal model of spinal cord injury. Biomed Mater. 2017; 13(2):024103. DOI: 10.1088/1748-605X/aa96dc. View