Impact of High-Molecular-Weight Hyaluronic Acid on Gene Expression in Rabbit Achilles Tenocytes In Vitro
Overview
Chemistry
Molecular Biology
Authors
Affiliations
(1) Background: Surgical tendon repair often leads to adhesion formation, leading to joint stiffness and a reduced range of motion. Tubular implants set around sutured tendons might help to reduce peritendinous adhesions. The lubricant hyaluronic acid (HA) is a viable option for optimizing such tubes with the goal of further enhancing the anti-adhesive effect. As the implant degrades over time and diffusion is presumed, the impact of HA on tendon cells is important to know. (2) Methods: A culture medium of rabbit Achilles tenocytes was supplemented with high-molecular-weight (HMW) HA and the growth curves of the cells were assessed. Additionally, after 3, 7 and 14 days, the gene expression of several markers was analyzed for matrix assembly, tendon differentiation, fibrosis, proliferation, matrix remodeling, pro-inflammation and resolution. (3) Results: The addition of HA decreased matrix marker genes, downregulated the fibrosis marker α-SMA for a short time and slightly increased the matrix-remodeling gene MMP-2. Of the pro-inflammatory marker genes, only IL-6 was significantly upregulated. IL-6 has to be kept in check, although IL-6 is also needed for a proper initial inflammation and efficient resolution. (4) Conclusions: The observed effects in vitro support the intended anti-adhesion effect and therefore, the use of HMW HA is promising as a biodegradable implant for tendon repair.
Rieber J, Niederhauser R, Giovanoli P, Buschmann J Materials (Basel). 2025; 18(3).
PMID: 39942332 PMC: 11820012. DOI: 10.3390/ma18030665.
Rieber J, Meier-Burgisser G, Miescher I, Weber F, Wolint P, Yao Y Int J Mol Sci. 2023; 24(12).
PMID: 37373418 PMC: 10299220. DOI: 10.3390/ijms241210272.