» Articles » PMID: 35840765

Temporal Response Characterization Across Individual Multiomics Profiles of Prediabetic and Diabetic Subjects

Overview
Journal Sci Rep
Specialty Science
Date 2022 Jul 15
PMID 35840765
Authors
Affiliations
Soon will be listed here.
Abstract

Longitudinal deep multiomics profiling, which combines biomolecular, physiological, environmental and clinical measures data, shows great promise for precision health. However, integrating and understanding the complexity of such data remains a big challenge. Here we utilize an individual-focused bottom-up approach aimed at first assessing single individuals' multiomics time series, and using the individual-level responses to assess multi-individual grouping based directly on similarity of their longitudinal deep multiomics profiles. We used this individual-focused approach to analyze profiles from a study profiling longitudinal responses in type 2 diabetes mellitus. After generating periodograms for individual subject omics signals, we constructed within-person omics networks and analyzed personal-level immune changes. The results identified both individual-level responses to immune perturbation, and the clusters of individuals that have similar behaviors in immune response and which were associated to measures of their diabetic status.

Citing Articles

Application of Clinical Blood Metabogram to Type 2 Diabetes Mellitus.

Lokhov P, Balashova E, Trifonova O, Maslov D, Shestakova E, Shestakova M Metabolites. 2024; 14(3).

PMID: 38535328 PMC: 10972189. DOI: 10.3390/metabo14030168.


Time-resolved molecular measurements reveal changes in astronauts during spaceflight.

Zheng M, Charvat J, Zwart S, Mehta S, Crucian B, Smith S Front Physiol. 2023; 14:1219221.

PMID: 37520819 PMC: 10376710. DOI: 10.3389/fphys.2023.1219221.


Clinical Blood Metabogram: Application to Overweight and Obese Patients.

Lokhov P, Balashova E, Trifonova O, Maslov D, Plotnikova O, Sharafetdinov K Metabolites. 2023; 13(7).

PMID: 37512504 PMC: 10386708. DOI: 10.3390/metabo13070798.


Current State and Future Perspectives on Personalized Metabolomics.

Trifonova O, Maslov D, Balashova E, Lokhov P Metabolites. 2023; 13(1).

PMID: 36676992 PMC: 9863827. DOI: 10.3390/metabo13010067.

References
1.
Mias G, Yusufaly T, Roushangar R, Brooks L, Singh V, Christou C . MathIOmica: An Integrative Platform for Dynamic Omics. Sci Rep. 2016; 6:37237. PMC: 5121649. DOI: 10.1038/srep37237. View

2.
Vargas-Alarcon G, Perez-Hernandez N, Rodriguez-Perez J, Fragoso J, Posadas-Romero C, Lopez-Bautista F . Interleukin 27 polymorphisms, their association with insulin resistance and their contribution to subclinical atherosclerosis. The GEA Mexican study. Cytokine. 2018; 114:32-37. DOI: 10.1016/j.cyto.2018.11.028. View

3.
Schussler-Fiorenza Rose S, Contrepois K, Moneghetti K, Zhou W, Mishra T, Mataraso S . A longitudinal big data approach for precision health. Nat Med. 2019; 25(5):792-804. PMC: 6713274. DOI: 10.1038/s41591-019-0414-6. View

4.
Randeria S, Thomson G, Nell T, Roberts T, Pretorius E . Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol. 2019; 18(1):72. PMC: 6549308. DOI: 10.1186/s12933-019-0870-9. View

5.
Kellogg R, Dunn J, Snyder M . Personal Omics for Precision Health. Circ Res. 2018; 122(9):1169-1171. DOI: 10.1161/CIRCRESAHA.117.310909. View