» Articles » PMID: 27883025

MathIOmica: An Integrative Platform for Dynamic Omics

Overview
Journal Sci Rep
Specialty Science
Date 2016 Nov 25
PMID 27883025
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Multiple omics data are rapidly becoming available, necessitating the use of new methods to integrate different technologies and interpret the results arising from multimodal assaying. The MathIOmica package for Mathematica provides one of the first extensive introductions to the use of the Wolfram Language to tackle such problems in bioinformatics. The package particularly addresses the necessity to integrate multiple omics information arising from dynamic profiling in a personalized medicine approach. It provides multiple tools to facilitate bioinformatics analysis, including importing data, annotating datasets, tracking missing values, normalizing data, clustering and visualizing the classification of data, carrying out annotation and enumeration of ontology memberships and pathway analysis. We anticipate MathIOmica to not only help in the creation of new bioinformatics tools, but also in promoting interdisciplinary investigations, particularly from researchers in mathematical, physical science and engineering fields transitioning into genomics, bioinformatics and omics data integration.

Citing Articles

Time-resolved molecular measurements reveal changes in astronauts during spaceflight.

Zheng M, Charvat J, Zwart S, Mehta S, Crucian B, Smith S Front Physiol. 2023; 14:1219221.

PMID: 37520819 PMC: 10376710. DOI: 10.3389/fphys.2023.1219221.


Metabolomics and modelling approaches for systems metabolic engineering.

Khanijou J, Kulyk H, Berges C, Khoo L, Ng P, Yeo H Metab Eng Commun. 2022; 15:e00209.

PMID: 36281261 PMC: 9587336. DOI: 10.1016/j.mec.2022.e00209.


Temporal response characterization across individual multiomics profiles of prediabetic and diabetic subjects.

Zheng M, Piermarocchi C, Mias G Sci Rep. 2022; 12(1):12098.

PMID: 35840765 PMC: 9284494. DOI: 10.1038/s41598-022-16326-9.


Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4 and PDPN CAFs to clinical outcome.

Friedman G, Levi-Galibov O, David E, Bornstein C, Giladi A, Dadiani M Nat Cancer. 2022; 1(7):692-708.

PMID: 35122040 PMC: 7617059. DOI: 10.1038/s43018-020-0082-y.


Visibility graph based temporal community detection with applications in biological time series.

Zheng M, Domanskyi S, Piermarocchi C, Mias G Sci Rep. 2021; 11(1):5623.

PMID: 33707481 PMC: 7952737. DOI: 10.1038/s41598-021-84838-x.


References
1.
Mias G, Snyder M . Personal genomes, quantitative dynamic omics and personalized medicine. Quant Biol. 2015; 1(1):71-90. PMC: 4366006. DOI: 10.1007/s40484-013-0005-3. View

2.
Huang D, Sherman B, Lempicki R . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57. DOI: 10.1038/nprot.2008.211. View

3.
Walter K, Min J, Huang J, Crooks L, Memari Y, McCarthy S . The UK10K project identifies rare variants in health and disease. Nature. 2015; 526(7571):82-90. PMC: 4773891. DOI: 10.1038/nature14962. View

4.
Mardis E . Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif). 2013; 6:287-303. DOI: 10.1146/annurev-anchem-062012-092628. View

5.
Whirl-Carrillo M, McDonagh E, Hebert J, Gong L, Sangkuhl K, Thorn C . Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012; 92(4):414-7. PMC: 3660037. DOI: 10.1038/clpt.2012.96. View