» Articles » PMID: 35768510

Mitochondrial RNA Modifications Shape Metabolic Plasticity in Metastasis

Abstract

Aggressive and metastatic cancers show enhanced metabolic plasticity, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (mC) and its derivative 5-formylcytosine (fC) (refs.)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of mC at position 34 in mitochondrial tRNA. mC-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial mC-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial mC to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.

Citing Articles

Mitochondrial genetics, signalling and stress responses.

Liu Y, Sulc J, Auwerx J Nat Cell Biol. 2025; 27(3):393-407.

PMID: 40065146 DOI: 10.1038/s41556-025-01625-w.


Detection, molecular function and mechanisms of m5C in cancer.

Zhang L, Li Y, Li L, Yao F, Cai M, Ye D Clin Transl Med. 2025; 15(3):e70239.

PMID: 40008496 PMC: 11862898. DOI: 10.1002/ctm2.70239.


Multi-omic and machine learning analysis of mitochondrial RNA modification genes in lung adenocarcinoma for prognostic and therapeutic implications.

Zhang X, Liu J, Cao Y, Wang W, Lin H, Yu Y Transl Oncol. 2025; 53:102306.

PMID: 39908965 PMC: 11847145. DOI: 10.1016/j.tranon.2025.102306.


Selection of initiator tRNA and start codon by mammalian mitochondrial initiation factor 3 in leaderless mRNA translation.

Lee M, Wakigawa T, Jia Q, Liu C, Huang R, Huang S Nucleic Acids Res. 2025; 53(3).

PMID: 39878211 PMC: 11775629. DOI: 10.1093/nar/gkaf021.


Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Ando D, Rashad S, Begley T, Endo H, Aoki M, Dedon P Int J Mol Sci. 2025; 26(2).

PMID: 39859422 PMC: 11766445. DOI: 10.3390/ijms26020706.


References
1.
Fendt S, Frezza C, Erez A . Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov. 2020; 10(12):1797-1807. PMC: 7710573. DOI: 10.1158/2159-8290.CD-20-0844. View

2.
Haag S, Sloan K, Ranjan N, Warda A, Kretschmer J, Blessing C . NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J. 2016; 35(19):2104-2119. PMC: 5048346. DOI: 10.15252/embj.201694885. View

3.
Nakano S, Suzuki T, Kawarada L, Iwata H, Asano K, Suzuki T . NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat Chem Biol. 2016; 12(7):546-51. DOI: 10.1038/nchembio.2099. View

4.
Van Haute L, Dietmann S, Kremer L, Hussain S, Pearce S, Powell C . Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun. 2016; 7:12039. PMC: 4931328. DOI: 10.1038/ncomms12039. View

5.
Lambert A, Pattabiraman D, Weinberg R . Emerging Biological Principles of Metastasis. Cell. 2017; 168(4):670-691. PMC: 5308465. DOI: 10.1016/j.cell.2016.11.037. View