» Articles » PMID: 27974793

Targeting Metastasis-initiating Cells Through the Fatty Acid Receptor CD36

Overview
Journal Nature
Specialty Science
Date 2016 Dec 16
PMID 27974793
Citations 685
Authors
Affiliations
Soon will be listed here.
Abstract

The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44 cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36 metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36 metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.

Citing Articles

Molecular Underpinnings of Brain Metastases.

Jacome M, Wu Q, Chen J, Mohamed Z, Mokhtari S, Pina Y Int J Mol Sci. 2025; 26(5).

PMID: 40076927 PMC: 11900073. DOI: 10.3390/ijms26052307.


Prognostic significance and immune microenvironment infiltration patterns of hypoxia and endoplasmic reticulum stress-related genes in gastric cancer.

Li L, Liang Y, Xu W Front Oncol. 2025; 15:1542740.

PMID: 40061897 PMC: 11885130. DOI: 10.3389/fonc.2025.1542740.


An Insight into Prognostic Impact of TIPE2 & CD36 Immunohistochemical Expression in Urothelial Carcinoma.

Abd El Maged A, Badr N, Mohammed H Iran J Pathol. 2025; 20(1):48-57.

PMID: 40060230 PMC: 11887630. DOI: 10.30699/ijp.2024.2029525.3301.


Modulating lipid metabolism by nanoparticles (NPs)-mediated ACSL3 silencing to inhibit hepatocellular carcinoma growth and metastasis.

Huang L, Xu R, Chen S, Lin C, Li W, Li S Mol Cancer. 2025; 24(1):73.

PMID: 40059153 PMC: 11892139. DOI: 10.1186/s12943-025-02274-1.


Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment.

Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z Mol Cancer. 2025; 24(1):61.

PMID: 40025508 PMC: 11874147. DOI: 10.1186/s12943-025-02258-1.


References
1.
Obenauf A, Zou Y, Ji A, Vanharanta S, Shu W, Shi H . Therapy-induced tumour secretomes promote resistance and tumour progression. Nature. 2015; 520(7547):368-72. PMC: 4507807. DOI: 10.1038/nature14336. View

2.
McAllister S, Weinberg R . The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol. 2014; 16(8):717-27. PMC: 6220424. DOI: 10.1038/ncb3015. View

3.
Fischer K, Durrans A, Lee S, Sheng J, Li F, Wong S . Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015; 527(7579):472-6. PMC: 4662610. DOI: 10.1038/nature15748. View

4.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50. PMC: 1239896. DOI: 10.1073/pnas.0506580102. View

5.
Zhou W, Fong M, Min Y, Somlo G, Liu L, Palomares M . Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014; 25(4):501-15. PMC: 4016197. DOI: 10.1016/j.ccr.2014.03.007. View