» Articles » PMID: 35746372

MTPA_Unet: Multi-Scale Transformer-Position Attention Retinal Vessel Segmentation Network Joint Transformer and CNN

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2022 Jun 24
PMID 35746372
Authors
Affiliations
Soon will be listed here.
Abstract

Retinal vessel segmentation is extremely important for risk prediction and treatment of many major diseases. Therefore, accurate segmentation of blood vessel features from retinal images can help assist physicians in diagnosis and treatment. Convolutional neural networks are good at extracting local feature information, but the convolutional block receptive field is limited. Transformer, on the other hand, performs well in modeling long-distance dependencies. Therefore, in this paper, a new network model MTPA_Unet is designed from the perspective of extracting connections between local detailed features and making complements using long-distance dependency information, which is applied to the retinal vessel segmentation task. MTPA_Unet uses multi-resolution image input to enable the network to extract information at different levels. The proposed TPA module not only captures long-distance dependencies, but also focuses on the location information of the vessel pixels to facilitate capillary segmentation. The Transformer is combined with the convolutional neural network in a serial approach, and the original MSA module is replaced by the TPA module to achieve finer segmentation. Finally, the network model is evaluated and analyzed on three recognized retinal image datasets DRIVE, CHASE DB1, and STARE. The evaluation metrics were 0.9718, 0.9762, and 0.9773 for accuracy; 0.8410, 0.8437, and 0.8938 for sensitivity; and 0.8318, 0.8164, and 0.8557 for Dice coefficient. Compared with existing retinal image segmentation methods, the proposed method in this paper achieved better vessel segmentation in all of the publicly available fundus datasets tested performance and results.

Citing Articles

CIT-EmotionNet: convolution interactive transformer network for EEG emotion recognition.

Lu W, Xia L, Tan T, Ma H PeerJ Comput Sci. 2025; 10:e2610.

PMID: 39896395 PMC: 11784834. DOI: 10.7717/peerj-cs.2610.


Intraoperative Augmented Reality for Vitreoretinal Surgery Using Edge Computing.

Ye R, Iezzi R J Pers Med. 2025; 15(1).

PMID: 39852212 PMC: 11766602. DOI: 10.3390/jpm15010020.


Spatial attention U-Net model with Harris hawks optimization for retinal blood vessel and optic disc segmentation in fundus images.

Kumar P, Shilpa B, Jha R, Chellibouina V Int Ophthalmol. 2024; 44(1):359.

PMID: 39207645 DOI: 10.1007/s10792-024-03279-3.


TD Swin-UNet: Texture-Driven Swin-UNet with Enhanced Boundary-Wise Perception for Retinal Vessel Segmentation.

Li A, Sun M, Wang Z Bioengineering (Basel). 2024; 11(5).

PMID: 38790355 PMC: 11118088. DOI: 10.3390/bioengineering11050488.


Automatic Classification of Colour Fundus Images for Prediction Eye Disease Types Based on Hybrid Features.

Shamsan A, Senan E, Ahmad Shatnawi H Diagnostics (Basel). 2023; 13(10).

PMID: 37238190 PMC: 10217068. DOI: 10.3390/diagnostics13101706.


References
1.
Oshitari T . Diabetic retinopathy: neurovascular disease requiring neuroprotective and regenerative therapies. Neural Regen Res. 2021; 17(4):795-796. PMC: 8530146. DOI: 10.4103/1673-5374.322457. View

2.
Xing C, Klein B, Klein R, Jun G, Lee K, Iyengar S . Genome-wide linkage study of retinal vessel diameters in the Beaver Dam Eye Study. Hypertension. 2006; 47(4):797-802. DOI: 10.1161/01.HYP.0000208330.68355.72. View

3.
Li Y, Li H, Fan Y . ACEnet: Anatomical context-encoding network for neuroanatomy segmentation. Med Image Anal. 2021; 70:101991. PMC: 8044013. DOI: 10.1016/j.media.2021.101991. View

4.
Wu H, Wang W, Zhong J, Lei B, Wen Z, Qin J . SCS-Net: A Scale and Context Sensitive Network for Retinal Vessel Segmentation. Med Image Anal. 2021; 70:102025. DOI: 10.1016/j.media.2021.102025. View

5.
Arsalan M, Haider A, Choi J, Park K . Diabetic and Hypertensive Retinopathy Screening in Fundus Images Using Artificially Intelligent Shallow Architectures. J Pers Med. 2022; 12(1). PMC: 8777982. DOI: 10.3390/jpm12010007. View