» Articles » PMID: 33607514

ACEnet: Anatomical Context-encoding Network for Neuroanatomy Segmentation

Overview
Journal Med Image Anal
Publisher Elsevier
Specialty Radiology
Date 2021 Feb 19
PMID 33607514
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Segmentation of brain structures from magnetic resonance (MR) scans plays an important role in the quantification of brain morphology. Since 3D deep learning models suffer from high computational cost, 2D deep learning methods are favored for their computational efficiency. However, existing 2D deep learning methods are not equipped to effectively capture 3D spatial contextual information that is needed to achieve accurate brain structure segmentation. In order to overcome this limitation, we develop an Anatomical Context-Encoding Network (ACEnet) to incorporate 3D spatial and anatomical contexts in 2D convolutional neural networks (CNNs) for efficient and accurate segmentation of brain structures from MR scans, consisting of 1) an anatomical context encoding module to incorporate anatomical information in 2D CNNs and 2) a spatial context encoding module to integrate 3D image information in 2D CNNs. In addition, a skull stripping module is adopted to guide the 2D CNNs to attend to the brain. Extensive experiments on three benchmark datasets have demonstrated that our method achieves promising performance compared with state-of-the-art alternative methods for brain structure segmentation in terms of both computational efficiency and segmentation accuracy.

Citing Articles

SegCSR: Weakly-Supervised Cortical Surfaces Reconstruction from Brain Ribbon Segmentations.

Zheng H, Chen X, Li H, Chen T, Liang P, Fan Y bioRxiv. 2024; .

PMID: 39713375 PMC: 11661244. DOI: 10.1101/2024.12.10.626888.


NN: Joint Reconstruction of Multiple Cortical Surfaces from Magnetic Resonance Images.

Zheng H, Li H, Fan Y Proc IEEE Int Symp Biomed Imaging. 2023; 2023.

PMID: 37790882 PMC: 10544794. DOI: 10.1109/isbi53787.2023.10230488.


HNAS-Reg: Hierarchical Neural Architecture Search for Deformable Medical Image Registration.

Wu J, Fan Y Proc IEEE Int Symp Biomed Imaging. 2023; 2023.

PMID: 37790881 PMC: 10544790. DOI: 10.1109/isbi53787.2023.10230534.


Learning ADC maps from accelerated radial k-space diffusion-weighted MRI in mice using a deep CNN-transformer model.

Li Y, Joaquim M, Pickup S, Song H, Zhou R, Fan Y Magn Reson Med. 2023; 91(1):105-117.

PMID: 37598398 PMC: 10691280. DOI: 10.1002/mrm.29833.


Automated Machine Learning Segmentation and Measurement of Urinary Stones on CT Scan.

Babajide R, Lembrikova K, Ziemba J, Ding J, Li Y, Fermin A Urology. 2022; 169:41-46.

PMID: 35908740 PMC: 9936246. DOI: 10.1016/j.urology.2022.07.029.


References
1.
Ren S, He K, Girshick R, Sun J . Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell. 2016; 39(6):1137-1149. DOI: 10.1109/TPAMI.2016.2577031. View

2.
Brosch T, Tang L, Yoo Y, Li D, Traboulsee A, Tam R . Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation. IEEE Trans Med Imaging. 2016; 35(5):1229-1239. DOI: 10.1109/TMI.2016.2528821. View

3.
Roy A, Conjeti S, Navab N, Wachinger C . QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy. Neuroimage. 2018; 186:713-727. DOI: 10.1016/j.neuroimage.2018.11.042. View

4.
Petersen R, Aisen P, Beckett L, Donohue M, Gamst A, Harvey D . Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010; 74(3):201-9. PMC: 2809036. DOI: 10.1212/WNL.0b013e3181cb3e25. View

5.
Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y . A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal. 2017; 43:98-111. PMC: 6029627. DOI: 10.1016/j.media.2017.10.002. View