» Articles » PMID: 32613207

UNet++: A Nested U-Net Architecture for Medical Image Segmentation

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper, we present UNet++, a new, more powerful architecture for medical image segmentation. Our architecture is essentially a deeply-supervised encoder-decoder network where the encoder and decoder sub-networks are connected through a series of nested, dense skip pathways. The re-designed skip pathways aim at reducing the semantic gap between the feature maps of the encoder and decoder sub-networks. We argue that the optimizer would deal with an easier learning task when the feature maps from the decoder and encoder networks are semantically similar. We have evaluated UNet++ in comparison with U-Net and wide U-Net architectures across multiple medical image segmentation tasks: nodule segmentation in the low-dose CT scans of chest, nuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.

Citing Articles

Attention-Enhanced Lightweight Architecture with Hybrid Loss for Colposcopic Image Segmentation.

Chatterjee P, Siddiqui S, Kareem R, Rao S Cancers (Basel). 2025; 17(5).

PMID: 40075629 PMC: 11899020. DOI: 10.3390/cancers17050781.


Dual-branch dynamic hierarchical U-Net with multi-layer space fusion attention for medical image segmentation.

Wang Z, Fu S, Zhang H, Wang C, Xia C, Hou P Sci Rep. 2025; 15(1):8194.

PMID: 40065006 PMC: 11894187. DOI: 10.1038/s41598-025-92715-0.


Pixel level deep reinforcement learning for accurate and robust medical image segmentation.

Liu Y, Yuan D, Xu Z, Zhan Y, Zhang H, Lu J Sci Rep. 2025; 15(1):8213.

PMID: 40064951 PMC: 11894052. DOI: 10.1038/s41598-025-92117-2.


Hybrid gabor attention convolution and transformer interaction network with hierarchical monitoring mechanism for liver and tumor segmentation.

Wang Z, Fu S, Fu S, Li D, Liu D, Yao Y Sci Rep. 2025; 15(1):8318.

PMID: 40064901 PMC: 11893890. DOI: 10.1038/s41598-025-90151-8.


Lightweight-CancerNet: a deep learning approach for brain tumor detection.

Raza A, Iqbal M PeerJ Comput Sci. 2025; 11:e2670.

PMID: 40062242 PMC: 11888863. DOI: 10.7717/peerj-cs.2670.


References
1.
Tajbakhsh N, Shin J, Gurudu S, Hurst R, Kendall C, Gotway M . Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?. IEEE Trans Med Imaging. 2016; 35(5):1299-1312. DOI: 10.1109/TMI.2016.2535302. View

2.
Shelhamer E, Long J, Darrell T . Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell. 2016; 39(4):640-651. DOI: 10.1109/TPAMI.2016.2572683. View

3.
Zhou Z, Shin J, Zhang L, Gurudu S, Gotway M, Liang J . Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2018; 2017:4761-4772. PMC: 6191179. DOI: 10.1109/CVPR.2017.506. View

4.
Li X, Chen H, Qi X, Dou Q, Fu C, Heng P . H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Trans Med Imaging. 2018; 37(12):2663-2674. DOI: 10.1109/TMI.2018.2845918. View

5.
Armato 3rd S, McLennan G, Bidaut L, McNitt-Gray M, Meyer C, Reeves A . The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011; 38(2):915-31. PMC: 3041807. DOI: 10.1118/1.3528204. View