» Articles » PMID: 35743063

Current Mechanistic Understandings of Lymphedema and Lipedema: Tales of Fluid, Fat, and Fibrosis

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 Jun 24
PMID 35743063
Authors
Affiliations
Soon will be listed here.
Abstract

Lymphedema and lipedema are complex diseases. While the external presentation of swollen legs in lower-extremity lymphedema and lipedema appear similar, current mechanistic understandings of these diseases indicate unique aspects of their underlying pathophysiology. They share certain clinical features, such as fluid (edema), fat (adipose expansion), and fibrosis (extracellular matrix remodeling). Yet, these diverge on their time course and known molecular regulators of pathophysiology and genetics. This divergence likely indicates a unique route leading to interstitial fluid accumulation and subsequent inflammation in lymphedema versus lipedema. Identifying disease mechanisms that are causal and which are merely indicative of the condition is far more explored in lymphedema than in lipedema. In primary lymphedema, discoveries of genetic mutations link molecular markers to mechanisms of lymphatic disease. Much work remains in this area towards better risk assessment of secondary lymphedema and the hopeful discovery of validated genetic diagnostics for lipedema. The purpose of this review is to expose the distinct and shared (i) clinical criteria and symptomatology, (ii) molecular regulators and pathophysiology, and (iii) genetic markers of lymphedema and lipedema to help inform future research in this field.

Citing Articles

Brazilian Consensus Statement on Lipedema using the Delphi methodology.

Amato A, Peclat A, Kikuchi R, de Souza A, Silva M, de Oliveira R J Vasc Bras. 2025; 24:e20230183.

PMID: 39949954 PMC: 11815829. DOI: 10.1590/1677-5449.202301832.


[Advances and perspectives in vascularized composite allotransplantation preservation].

Berkane Y, Oubari H, Lupon E, Goutard M, Tawa P, Randolph M Bull Acad Natl Med. 2025; 208(9):1299-1308.

PMID: 39906406 PMC: 11790288. DOI: 10.1016/j.banm.2024.09.001.


Lipedema: exploring pathophysiology and treatment strategies - state of the art.

Kamamoto F, Baiocchi J, Batista B, Ribeiro R, Modena D, Gornati V J Vasc Bras. 2025; 23():e20240025.

PMID: 39866170 PMC: 11758576. DOI: 10.1590/1677-5449.202400252.


Immediate lymphatic reconstruction for the prevention of breast cancer-related lymphedema: an experience highlighting the importance of lymphatic anatomy.

Friedman R, Kinney J, Bahadur A, Singhal D Plast Aesthet Res. 2024; 10.

PMID: 39640842 PMC: 11619053. DOI: 10.20517/2347-9264.2022.100.


TRPML1 acts as a predisposing factor in lymphedema development by regulating the subcellular localization of aquaporin-3, -5.

Yang L, Wang G, Ma Y, Zhao Q, Zhao H, Wang Q PLoS One. 2024; 19(12):e0310653.

PMID: 39637010 PMC: 11620549. DOI: 10.1371/journal.pone.0310653.


References
1.
Szolnoky G, Nemes A, Gavaller H, Forster T, Kemeny L . Lipedema is associated with increased aortic stiffness. Lymphology. 2012; 45(2):71-9. View

2.
Di S, Ziyou Y, Liu N . Pathological Changes of Lymphedematous Skin: Increased Mast Cells, Related Proteases, and Activated Transforming Growth Factor-β1. Lymphat Res Biol. 2016; 14(3):162-71. DOI: 10.1089/lrb.2016.0010. View

3.
Clavin N, Avraham T, Fernandez J, Daluvoy S, Soares M, Chaudhry A . TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol. 2008; 295(5):H2113-27. DOI: 10.1152/ajpheart.00879.2008. View

4.
Irrthum A, Karkkainen M, Devriendt K, Alitalo K, Vikkula M . Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. 2000; 67(2):295-301. PMC: 1287178. DOI: 10.1086/303019. View

5.
Herbst K, Kahn L, Iker E, Ehrlich C, Wright T, McHutchison L . Standard of care for lipedema in the United States. Phlebology. 2021; 36(10):779-796. PMC: 8652358. DOI: 10.1177/02683555211015887. View