» Articles » PMID: 35680862

Watching Right and Wrong Nucleotide Insertion Captures Hidden Polymerase Fidelity Checkpoints

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jun 10
PMID 35680862
Authors
Affiliations
Soon will be listed here.
Abstract

Efficient and accurate DNA synthesis is enabled by DNA polymerase fidelity checkpoints that promote insertion of the right instead of wrong nucleotide. Erroneous X-family polymerase (pol) λ nucleotide insertion leads to genomic instability in double strand break and base-excision repair. Here, time-lapse crystallography captures intermediate catalytic states of pol λ undergoing right and wrong natural nucleotide insertion. The revealed nucleotide sensing mechanism responds to base pair geometry through active site deformation to regulate global polymerase-substrate complex alignment in support of distinct optimal (right) or suboptimal (wrong) reaction pathways. An induced fit during wrong but not right insertion, and associated metal, substrate, side chain and pyrophosphate reaction dynamics modulated nucleotide insertion. A third active site metal hastened right but not wrong insertion and was not essential for DNA synthesis. The previously hidden fidelity checkpoints uncovered reveal fundamental strategies of polymerase DNA repair synthesis in genomic instability.

Citing Articles

Structural basis for substrate binding and selection by human mitochondrial RNA polymerase.

Herbine K, Nayak A, Temiakov D Nat Commun. 2024; 15(1):7134.

PMID: 39164235 PMC: 11335763. DOI: 10.1038/s41467-024-50817-9.


DNA polymerase λ Loop1 variant yields unexpected gain-of-function capabilities in nonhomologous end-joining.

Kaminski A, Chiruvella K, Ramsden D, Bebenek K, Kunkel T, Pedersen L DNA Repair (Amst). 2024; 136:103645.

PMID: 38428373 PMC: 11078337. DOI: 10.1016/j.dnarep.2024.103645.


In crystallo observation of active site dynamics and transient metal ion binding within DNA polymerases.

Chang C, Zhou G, Gao Y Struct Dyn. 2023; 10(3):034702.

PMID: 37333512 PMC: 10275647. DOI: 10.1063/4.0000187.


Polλ promotes microhomology-mediated end-joining.

Chandramouly G, Jamsen J, Borisonnik N, Tyagi M, Calbert M, Tredinnick T Nat Struct Mol Biol. 2022; 30(1):107-114.

PMID: 36536104 PMC: 10197178. DOI: 10.1038/s41594-022-00895-4.


New insights into DNA polymerase mechanisms provided by time-lapse crystallography.

Weaver T, Washington M, Freudenthal B Curr Opin Struct Biol. 2022; 77:102465.

PMID: 36174287 PMC: 9772199. DOI: 10.1016/j.sbi.2022.102465.

References
1.
Jamsen J, Beard W, Pedersen L, Shock D, Moon A, Krahn J . Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. Nat Commun. 2017; 8(1):253. PMC: 5557891. DOI: 10.1038/s41467-017-00271-7. View

2.
Frit P, Barboule N, Yuan Y, Gomez D, Calsou P . Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair (Amst). 2014; 17:81-97. DOI: 10.1016/j.dnarep.2014.02.007. View

3.
Kottur J, Nair D . Pyrophosphate hydrolysis is an intrinsic and critical step of the DNA synthesis reaction. Nucleic Acids Res. 2018; 46(12):5875-5885. PMC: 6159520. DOI: 10.1093/nar/gky402. View

4.
Shock D, Freudenthal B, Beard W, Wilson S . Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction. Nat Chem Biol. 2017; 13(10):1074-1080. PMC: 5605435. DOI: 10.1038/nchembio.2450. View

5.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View