» Articles » PMID: 35658001

ScAmpi-A Versatile Pipeline for Single-cell RNA-seq Analysis from Basics to Clinics

Overview
Specialty Biology
Date 2022 Jun 3
PMID 35658001
Authors
Affiliations
Soon will be listed here.
Abstract

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technique to decipher tissue composition at the single-cell level and to inform on disease mechanisms, tumor heterogeneity, and the state of the immune microenvironment. Although multiple methods for the computational analysis of scRNA-seq data exist, their application in a clinical setting demands standardized and reproducible workflows, targeted to extract, condense, and display the clinically relevant information. To this end, we designed scAmpi (Single Cell Analysis mRNA pipeline), a workflow that facilitates scRNA-seq analysis from raw read processing to informing on sample composition, clinically relevant gene and pathway alterations, and in silico identification of personalized candidate drug treatments. We demonstrate the value of this workflow for clinical decision making in a molecular tumor board as part of a clinical study.

Citing Articles

Single-cell landscape of innate and acquired drug resistance in acute myeloid leukemia.

Wegmann R, Bonilla X, Casanova R, Chevrier S, Coelho R, Esposito C Nat Commun. 2024; 15(1):9402.

PMID: 39477946 PMC: 11525670. DOI: 10.1038/s41467-024-53535-4.


Automated single-cell omics end-to-end framework with data-driven batch inference.

Wang Y, Thistlethwaite W, Tadych A, Ruf-Zamojski F, Bernard D, Cappuccio A Cell Syst. 2024; 15(10):982-990.e5.

PMID: 39366377 PMC: 11491117. DOI: 10.1016/j.cels.2024.09.003.


Detection of isoforms and genomic alterations by high-throughput full-length single-cell RNA sequencing in ovarian cancer.

Dondi A, Lischetti U, Jacob F, Singer F, Borgsmuller N, Coelho R Nat Commun. 2023; 14(1):7780.

PMID: 38012143 PMC: 10682465. DOI: 10.1038/s41467-023-43387-9.


Automated single-cell omics end-to-end framework with data-driven batch inference.

Wang Y, Thistlethwaite W, Tadych A, Ruf-Zamojski F, Bernard D, Cappuccio A bioRxiv. 2023; .

PMID: 37961197 PMC: 10635042. DOI: 10.1101/2023.11.01.564815.


Data Mining of Microarray Datasets in Translational Neuroscience.

OConnor L, OConnor B, Zeng J, Lo C Brain Sci. 2023; 13(9).

PMID: 37759919 PMC: 10527016. DOI: 10.3390/brainsci13091318.


References
1.
Koster J, Rahmann S . Snakemake-a scalable bioinformatics workflow engine. Bioinformatics. 2018; 34(20):3600. DOI: 10.1093/bioinformatics/bty350. View

2.
Wolf F, Angerer P, Theis F . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15. PMC: 5802054. DOI: 10.1186/s13059-017-1382-0. View

3.
Moher D, Avey M, Antes G, Altman D . The National Institutes of Health and guidance for reporting preclinical research. BMC Med. 2015; 13:34. PMC: 4332445. DOI: 10.1186/s12916-015-0284-9. View

4.
Peng R . Reproducible research and Biostatistics. Biostatistics. 2009; 10(3):405-8. DOI: 10.1093/biostatistics/kxp014. View

5.
Amezquita R, Lun A, Becht E, Carey V, Carpp L, Geistlinger L . Orchestrating single-cell analysis with Bioconductor. Nat Methods. 2019; 17(2):137-145. PMC: 7358058. DOI: 10.1038/s41592-019-0654-x. View