» Articles » PMID: 35654811

Artificial Neural Networks Enable Genome-scale Simulations of Intracellular Signaling

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jun 2
PMID 35654811
Authors
Affiliations
Soon will be listed here.
Abstract

Mammalian cells adapt their functional state in response to external signals in form of ligands that bind receptors on the cell-surface. Mechanistically, this involves signal-processing through a complex network of molecular interactions that govern transcription factor activity patterns. Computer simulations of the information flow through this network could help predict cellular responses in health and disease. Here we develop a recurrent neural network framework constrained by prior knowledge of the signaling network with ligand-concentrations as input and transcription factor-activity as output. Applied to synthetic data, it predicts unseen test-data (Pearson correlation r = 0.98) and the effects of gene knockouts (r = 0.8). We stimulate macrophages with 59 different ligands, with and without the addition of lipopolysaccharide, and collect transcriptomics data. The framework predicts this data under cross-validation (r = 0.8) and knockout simulations suggest a role for RIPK1 in modulating the lipopolysaccharide response. This work demonstrates the feasibility of genome-scale simulations of intracellular signaling.

Citing Articles

Towards an interpretable deep learning model of cancer.

Nilsson A, Meimetis N, Lauffenburger D NPJ Precis Oncol. 2025; 9(1):46.

PMID: 39948231 PMC: 11825879. DOI: 10.1038/s41698-025-00822-y.


A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions.

Xi X, Li J, Jia J, Meng Q, Li C, Wang X Nat Commun. 2025; 16(1):1284.

PMID: 39900922 PMC: 11790924. DOI: 10.1038/s41467-025-56475-9.


Protocol to infer off-target effects of drugs on cellular signaling using interactome-based deep learning.

Meimetis N, Lauffenburger D, Nilsson A STAR Protoc. 2025; 6(1):103573.

PMID: 39823233 PMC: 11786766. DOI: 10.1016/j.xpro.2024.103573.


From transcriptomics to digital twins of organ function.

Hansen J, Jain A, Nenov P, Robinson P, Iyengar R Front Cell Dev Biol. 2024; 12:1240384.

PMID: 38989060 PMC: 11234175. DOI: 10.3389/fcell.2024.1240384.


Molecular causality in the advent of foundation models.

Lobentanzer S, Rodriguez-Mier P, Bauer S, Saez-Rodriguez J Mol Syst Biol. 2024; 20(8):848-858.

PMID: 38890548 PMC: 11297329. DOI: 10.1038/s44320-024-00041-w.


References
1.
Hyduke D, Palsson B . Towards genome-scale signalling network reconstructions. Nat Rev Genet. 2010; 11(4):297-307. DOI: 10.1038/nrg2750. View

2.
Bertram R, Rubin J . Multi-timescale systems and fast-slow analysis. Math Biosci. 2016; 287:105-121. DOI: 10.1016/j.mbs.2016.07.003. View

3.
. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2016; 45(D1):D158-D169. PMC: 5210571. DOI: 10.1093/nar/gkw1099. View

4.
Simone T, Higgins C, Czekay R, Law B, Higgins S, Archambeault J . SERPINE1: A Molecular Switch in the Proliferation-Migration Dichotomy in Wound-"Activated" Keratinocytes. Adv Wound Care (New Rochelle). 2014; 3(3):281-290. PMC: 3955966. DOI: 10.1089/wound.2013.0512. View

5.
Orth J, Thiele I, Palsson B . What is flux balance analysis?. Nat Biotechnol. 2010; 28(3):245-8. PMC: 3108565. DOI: 10.1038/nbt.1614. View