» Articles » PMID: 35628237

Protein Prenyltransferases and Their Inhibitors: Structural and Functional Characterization

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 May 28
PMID 35628237
Authors
Affiliations
Soon will be listed here.
Abstract

Protein prenylation is a post-translational modification controlling the localization, activity, and protein-protein interactions of small GTPases, including the Ras superfamily. This covalent attachment of either a farnesyl (15 carbon) or a geranylgeranyl (20 carbon) isoprenoid group is catalyzed by four prenyltransferases, namely farnesyltransferase (FTase), geranylgeranyltransferase type I (GGTase-I), Rab geranylgeranyltransferase (GGTase-II), and recently discovered geranylgeranyltransferase type III (GGTase-III). Blocking small GTPase activity, namely inhibiting prenyltransferases, has been proposed as a potential disease treatment method. Inhibitors of prenyltransferase have resulted in substantial therapeutic benefits in various diseases, such as cancer, neurological disorders, and viral and parasitic infections. In this review, we overview the structure of FTase, GGTase-I, GGTase-II, and GGTase-III and summarize the current status of research on their inhibitors.

Citing Articles

Examining Farnesyltransferase Interaction With Cell-Permeable CaaX Peptides and the Role of the CaaX Motif in Biological Activity.

Klussmann M, Reuter J, Werner C, Neundorf I J Pept Sci. 2025; 31(4):e70009.

PMID: 40064612 PMC: 11893521. DOI: 10.1002/psc.70009.


Synthesis, Bioproduction and Bioactivity of Perillic Acid-A Review.

Rolim T, Sampaio A, Mazzei J, Moreira D, Siani A Molecules. 2025; 30(3).

PMID: 39942631 PMC: 11820084. DOI: 10.3390/molecules30030528.


Regulation of autophagy by protein lipidation.

Shao Y, Hu J, Li H, Lu K Adv Biotechnol (Singap). 2025; 2(4):33.

PMID: 39883197 PMC: 11709147. DOI: 10.1007/s44307-024-00040-w.


Itaconate facilitates viral infection via alkylating GDI2 and retaining Rab GTPase on the membrane.

Yin S, Tao Y, Li T, Li C, Cui Y, Zhang Y Signal Transduct Target Ther. 2024; 9(1):371.

PMID: 39730330 PMC: 11681089. DOI: 10.1038/s41392-024-02077-8.


In Silico Strategies for Characterizing Inner Cavities of Lipid-Binding Proteins.

Sacher S, Ray A Methods Mol Biol. 2024; 2888:305-320.

PMID: 39699739 DOI: 10.1007/978-1-0716-4318-1_20.


References
1.
Gray J, von Delft F, Brennan P . Targeting the Small GTPase Superfamily through Their Regulatory Proteins. Angew Chem Int Ed Engl. 2019; 59(16):6342-6366. PMC: 7204875. DOI: 10.1002/anie.201900585. View

2.
Kazmierczak A, Kusy D, Niinivehmas S, Gmach J, Joachimiak L, Pentikainen O . Identification of the Privileged Position in the Imidazo[1,2-a]pyridine Ring of Phosphonocarboxylates for Development of Rab Geranylgeranyl Transferase (RGGT) Inhibitors. J Med Chem. 2017; 60(21):8781-8800. DOI: 10.1021/acs.jmedchem.7b00811. View

3.
Long S, Casey P, Beese L . Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry. 1998; 37(27):9612-8. DOI: 10.1021/bi980708e. View

4.
Farnsworth C, Wolda S, Gelb M, Glomset J . Human lamin B contains a farnesylated cysteine residue. J Biol Chem. 1989; 264(34):20422-9. PMC: 3443689. View

5.
Coxon F, Joachimiak L, Najumudeen A, Breen G, Gmach J, Oetken-Lindholm C . Synthesis and characterization of novel phosphonocarboxylate inhibitors of RGGT. Eur J Med Chem. 2014; 84:77-89. DOI: 10.1016/j.ejmech.2014.06.062. View