» Articles » PMID: 35584220

Hierarchical Self-uncloaking CRISPR-Cas13a-customized RNA Nanococoons for Spatial-controlled Genome Editing and Precise Cancer Therapy

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2022 May 18
PMID 35584220
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR-Cas13a holds enormous potential for developing precise RNA editing. However, spatial manipulation of CRISPR-Cas13a activity remains a daunting challenge for elaborately regulating localized RNase function. Here, we designed hierarchical self-uncloaking CRISPR-Cas13a-customized RNA nanococoons (RNCOs-D), featuring tumor-specific recognition and spatial-controlled activation of Cas13a, for precise cancer synergistic therapy. RNCOs-D consists of programmable RNA nanosponges (RNSs) capable of targeted delivery and caging chemotherapeutic drug, and nanocapsules (NCs) anchored on RNSs for cloaking Cas13a/crRNA ribonucleoprotein (Cas13a RNP) activity. The acidic endo/lysosomal microenvironment stimulates the outer decomposition of NCs with concomitant Cas13a RNP activity revitalization, while the inner disassembly through trans-cleavage of RNSs initiated by cis-recognition and cleavage of EGFR variant III (EGFRvIII) mRNA. RNCOs-D demonstrates the effective EGFRvIII mRNA silencing for synergistic therapy of glioblastoma cancer cells in vitro and in vivo. The engineering of RNSs, together with efficient Cas13a activity regulation, holds immense prospect for multimodal and synergistic cancer therapy.

Citing Articles

CRISPR-Cas13: Pioneering RNA Editing for Nucleic Acid Therapeutics.

Zhu G, Zhou X, Wen M, Qiao J, Li G, Yao Y Biodes Res. 2024; 6:0041.

PMID: 39228750 PMC: 11371277. DOI: 10.34133/bdr.0041.


Synergistic intravesical instillation for bladder cancer: CRISPR-Cas13a and fenbendazole combination therapy.

Liang M, Wang Y, Liu L, Deng D, Yan Z, Feng L J Exp Clin Cancer Res. 2024; 43(1):223.

PMID: 39128990 PMC: 11318243. DOI: 10.1186/s13046-024-03146-0.


Genotype-specific precision tumor therapy using mitochondrial DNA mutation-induced drug release system.

Li Y, Xu R, Wu Y, Guo J, Quan F, Pei Y Sci Adv. 2023; 9(39):eadi1965.

PMID: 37756407 PMC: 10530102. DOI: 10.1126/sciadv.adi1965.


Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning.

Wessels H, Stirn A, Mendez-Mancilla A, Kim E, Hart S, Knowles D Nat Biotechnol. 2023; 42(4):628-637.

PMID: 37400521 DOI: 10.1038/s41587-023-01830-8.


Development of CRISPR/Cas12b-Based Multiple Cross Displacement Amplification Technique for the Detection of Complex in Clinical Settings.

Yang X, Huang J, Chen Y, Ying X, Tan Q, Chen X Microbiol Spectr. 2023; :e0347522.

PMID: 36975805 PMC: 10100757. DOI: 10.1128/spectrum.03475-22.


References
1.
Kushawah G, Hernandez-Huertas L, Abugattas-Nunez Del Prado J, Martinez-Morales J, DeVore M, Hassan H . CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos. Dev Cell. 2020; 54(6):805-817.e7. DOI: 10.1016/j.devcel.2020.07.013. View

2.
Pecot C, Calin G, Coleman R, Lopez-Berestein G, Sood A . RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2010; 11(1):59-67. PMC: 3199132. DOI: 10.1038/nrc2966. View

3.
Yue H, Huang R, Shan Y, Xing D . Delivery of Cas13a/crRNA by self-degradable black phosphorus nanosheets to specifically inhibit Mcl-1 for breast cancer therapy. J Mater Chem B. 2020; 8(48):11096-11106. DOI: 10.1039/d0tb01914c. View

4.
Afonin K, Grabow W, Walker F, Bindewald E, Dobrovolskaia M, Shapiro B . Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc. 2011; 6(12):2022-34. PMC: 3498981. DOI: 10.1038/nprot.2011.418. View

5.
Jasinski D, Haque F, Binzel D, Guo P . Advancement of the Emerging Field of RNA Nanotechnology. ACS Nano. 2017; 11(2):1142-1164. PMC: 5333189. DOI: 10.1021/acsnano.6b05737. View