» Articles » PMID: 35577957

Alignment and Integration of Spatial Transcriptomics Data

Overview
Journal Nat Methods
Date 2022 May 16
PMID 35577957
Authors
Affiliations
Soon will be listed here.
Abstract

Spatial transcriptomics (ST) measures mRNA expression across thousands of spots from a tissue slice while recording the two-dimensional (2D) coordinates of each spot. We introduce probabilistic alignment of ST experiments (PASTE), a method to align and integrate ST data from multiple adjacent tissue slices. PASTE computes pairwise alignments of slices using an optimal transport formulation that models both transcriptional similarity and physical distances between spots. PASTE further combines pairwise alignments to construct a stacked 3D alignment of a tissue. Alternatively, PASTE can integrate multiple ST slices into a single consensus slice. We show that PASTE accurately aligns spots across adjacent slices in both simulated and real ST data, demonstrating the advantages of using both transcriptional similarity and spatial information. We further show that the PASTE integrated slice improves the identification of cell types and differentially expressed genes compared with existing approaches that either analyze single ST slices or ignore spatial information.

Citing Articles

STModule: identifying tissue modules to uncover spatial components and characteristics of transcriptomic landscapes.

Wang R, Qian Y, Guo X, Song F, Xiong Z, Cai S Genome Med. 2025; 17(1):18.

PMID: 40033360 PMC: 11874447. DOI: 10.1186/s13073-025-01441-9.


Joint imputation and deconvolution of gene expression across spatial transcriptomics platforms.

Zheng H, Sarkar H, Raphael B bioRxiv. 2025; .

PMID: 40027720 PMC: 11870578. DOI: 10.1101/2025.02.17.638195.


Learning Latent Trajectories in Developmental Time Series with Hidden-Markov Optimal Transport.

Halmos P, Gold J, Liu X, Raphael B bioRxiv. 2025; .

PMID: 40027676 PMC: 11870411. DOI: 10.1101/2025.02.14.638351.


scBSP: A fast and accurate tool for identifying spatially variable features from high-resolution spatial omics data.

Li J, Raina M, Wang Y, Xu C, Su L, Guo Q bioRxiv. 2025; .

PMID: 39974940 PMC: 11838397. DOI: 10.1101/2025.02.02.636138.


Trajectory Inference with Cell-Cell Interactions (TICCI): intercellular communication improves the accuracy of trajectory inference methods.

Fu Y, Qu H, Qu D, Zhao M Bioinformatics. 2025; 41(2).

PMID: 39898810 PMC: 11829803. DOI: 10.1093/bioinformatics/btaf027.


References
1.
Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H . SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 2021; 49(9):e50. PMC: 8136778. DOI: 10.1093/nar/gkab043. View

2.
Stahl P, Salmen F, Vickovic S, Lundmark A, Fernandez Navarro J, Magnusson J . Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016; 353(6294):78-82. DOI: 10.1126/science.aaf2403. View

3.
Townes F, Hicks S, Aryee M, Irizarry R . Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model. Genome Biol. 2019; 20(1):295. PMC: 6927135. DOI: 10.1186/s13059-019-1861-6. View

4.
Yoosuf N, Fernandez Navarro J, Salmen F, Stahl P, Daub C . Identification and transfer of spatial transcriptomics signatures for cancer diagnosis. Breast Cancer Res. 2020; 22(1):6. PMC: 6958738. DOI: 10.1186/s13058-019-1242-9. View

5.
Durif G, Modolo L, Mold J, Lambert-Lacroix S, Picard F . Probabilistic count matrix factorization for single cell expression data analysis. Bioinformatics. 2019; 35(20):4011-4019. DOI: 10.1093/bioinformatics/btz177. View