Airpart: Interpretable Statistical Models for Analyzing Allelic Imbalance in Single-cell Datasets
Overview
Affiliations
Motivation: Allelic expression analysis aids in detection of cis-regulatory mechanisms of genetic variation, which produce allelic imbalance (AI) in heterozygotes. Measuring AI in bulk data lacking time or spatial resolution has the limitation that cell-type-specific (CTS), spatial- or time-dependent AI signals may be dampened or not detected.
Results: We introduce a statistical method airpart for identifying differential CTS AI from single-cell RNA-sequencing data, or dynamics AI from other spatially or time-resolved datasets. airpart outputs discrete partitions of data, pointing to groups of genes and cells under common mechanisms of cis-genetic regulation. In order to account for low counts in single-cell data, our method uses a Generalized Fused Lasso with Binomial likelihood for partitioning groups of cells by AI signal, and a hierarchical Bayesian model for AI statistical inference. In simulation, airpart accurately detected partitions of cell types by their AI and had lower Root Mean Square Error (RMSE) of allelic ratio estimates than existing methods. In real data, airpart identified differential allelic imbalance patterns across cell states and could be used to define trends of AI signal over spatial or time axes.
Availability And Implementation: The airpart package is available as an R/Bioconductor package at https://bioconductor.org/packages/airpart.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Simmons S, Adiconis X, Haywood N, Parker J, Lin Z, Liao Z bioRxiv. 2024; .
PMID: 39185246 PMC: 11343128. DOI: 10.1101/2024.08.13.607784.
Computational methods for allele-specific expression in single cells.
Qi G, Battle A Trends Genet. 2024; 40(11):939-949.
PMID: 39127549 PMC: 11537817. DOI: 10.1016/j.tig.2024.07.003.
Detection of allele-specific expression in spatial transcriptomics with spASE.
Zou L, Cable D, Barrera-Lopez I, Zhao T, Murray E, Aryee M Genome Biol. 2024; 25(1):180.
PMID: 38978101 PMC: 11229351. DOI: 10.1186/s13059-024-03317-4.
Single-cell genomics and regulatory networks for 388 human brains.
Emani P, Liu J, Clarke D, Jensen M, Warrell J, Gupta C Science. 2024; 384(6698):eadi5199.
PMID: 38781369 PMC: 11365579. DOI: 10.1126/science.adi5199.
Ma H, Shi Z, Kim M, Liu B, Smith P, Liu Y Neuroimage. 2024; 292:120609.
PMID: 38614371 PMC: 11069285. DOI: 10.1016/j.neuroimage.2024.120609.