» Articles » PMID: 35506657

De Novo-designed Transmembrane Domains Tune Engineered Receptor Functions

Overview
Journal Elife
Specialty Biology
Date 2022 May 4
PMID 35506657
Authors
Affiliations
Soon will be listed here.
Abstract

De novo-designed receptor transmembrane domains (TMDs) present opportunities for precise control of cellular receptor functions. We developed a de novo design strategy for generating programmed membrane proteins (proMPs): single-pass α-helical TMDs that self-assemble through computationally defined and crystallographically validated interfaces. We used these proMPs to program specific oligomeric interactions into a chimeric antigen receptor (CAR) that we expressed in mouse primary T cells and found that both in vitro CAR T cell cytokine release and in vivo antitumor activity scaled linearly with the oligomeric state encoded by the receptor TMD, from monomers up to tetramers. All programmed CARs stimulated substantially lower T cell cytokine release relative to the commonly used CD28 TMD, which we show elevated cytokine release through lateral recruitment of the endogenous T cell costimulatory receptor CD28. Precise design using orthogonal and modular TMDs thus provides a new way to program receptor structure and predictably tune activity for basic or applied synthetic biology.

Citing Articles

CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity.

Kong Y, Li J, Zhao X, Wu Y, Chen L Front Immunol. 2025; 15():1519671.

PMID: 39850899 PMC: 11754230. DOI: 10.3389/fimmu.2024.1519671.


Exploring structure-function relationships in engineered receptor performance using computational structure prediction.

Corcoran W, Cosio A, Edelstein H, Leonard J bioRxiv. 2024; .

PMID: 39574600 PMC: 11581020. DOI: 10.1101/2024.11.07.622438.


Chemical mapping of the surface interactome of PIEZO1 identifies CADM1 as a modulator of channel inactivation.

Koster A, Yarishkin O, Dubin A, Kefauver J, Pak R, Cravatt B Proc Natl Acad Sci U S A. 2024; 121(41):e2415934121.

PMID: 39356664 PMC: 11474052. DOI: 10.1073/pnas.2415934121.


Empowering brain tumor management: chimeric antigen receptor macrophage therapy.

Feng F, Shen J, Qi Q, Zhang Y, Ni S Theranostics. 2024; 14(14):5725-5742.

PMID: 39310093 PMC: 11413779. DOI: 10.7150/thno.98290.


Essentials of CAR-T Therapy and Associated Microbial Challenges in Long Run Immunotherapy.

Kalim M, Jing R, Li X, Jiang Z, Zheng N, Wang Z J Cell Immunol. 2024; 6(1):22-50.

PMID: 38883270 PMC: 11172397. DOI: 10.33696/immunology.6.189.


References
1.
Winn M, Ballard C, Cowtan K, Dodson E, Emsley P, Evans P . Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):235-42. PMC: 3069738. DOI: 10.1107/S0907444910045749. View

2.
Wels W, Harwerth I, Zwickl M, Hardman N, Groner B, Hynes N . Construction, bacterial expression and characterization of a bifunctional single-chain antibody-phosphatase fusion protein targeted to the human erbB-2 receptor. Biotechnology (N Y). 1992; 10(10):1128-32. DOI: 10.1038/nbt1092-1128. View

3.
Davey A, Call M, Call M . The Influence of Chimeric Antigen Receptor Structural Domains on Clinical Outcomes and Associated Toxicities. Cancers (Basel). 2020; 13(1). PMC: 7794933. DOI: 10.3390/cancers13010038. View

4.
Brudno J, Lam N, Vanasse D, Shen Y, Rose J, Rossi J . Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat Med. 2020; 26(2):270-280. PMC: 7781235. DOI: 10.1038/s41591-019-0737-3. View

5.
Liebschner D, Afonine P, Baker M, Bunkoczi G, Chen V, Croll T . Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019; 75(Pt 10):861-877. PMC: 6778852. DOI: 10.1107/S2059798319011471. View