» Articles » PMID: 35484407

Mitochondrial Electron Transport Chain is Necessary for NLRP3 Inflammasome Activation

Abstract

The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase, which can complement the functional loss of mitochondrial complex I or III, respectively, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, the mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP, but via a ROS-independent mechanism.

Citing Articles

Mitochondrial Dysfunction in Neurodegenerative Diseases: Mechanisms and Corresponding Therapeutic Strategies.

Meng K, Jia H, Hou X, Zhu Z, Lu Y, Feng Y Biomedicines. 2025; 13(2).

PMID: 40002740 PMC: 11852430. DOI: 10.3390/biomedicines13020327.


Pro-inflammatory macrophages produce mitochondria-derived superoxide by reverse electron transport at complex I that regulates IL-1β release during NLRP3 inflammasome activation.

Casey A, Ryan D, Prag H, Chowdhury S, Marques E, Turner K Nat Metab. 2025; .

PMID: 39972217 DOI: 10.1038/s42255-025-01224-x.


Nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 inflammasome: From action mechanism to therapeutic target in clinical trials.

Zhang C, Liu S, Sui Y, Yang M World J Gastrointest Oncol. 2025; 17(2):100094.

PMID: 39958558 PMC: 11756006. DOI: 10.4251/wjgo.v17.i2.100094.


Microglial NLRP3 Inflammasomes in Alzheimer's Disease Pathogenesis: From Interaction with Autophagy/Mitophagy to Therapeutics.

Ayyubova G, Madhu L Mol Neurobiol. 2025; .

PMID: 39951189 DOI: 10.1007/s12035-025-04758-z.


Nanotherapies Based on ROS Regulation in Oral Diseases.

Luo X, Zhang Y, Zeng Y, Yang D, Zhou Z, Zheng Z Adv Sci (Weinh). 2025; 12(9):e2409087.

PMID: 39887942 PMC: 11884622. DOI: 10.1002/advs.202409087.


References
1.
Rathinam V, Fitzgerald K . Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell. 2016; 165(4):792-800. PMC: 5503689. DOI: 10.1016/j.cell.2016.03.046. View

2.
Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith B, Rajendiran T, Nunez G . K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013; 38(6):1142-53. PMC: 3730833. DOI: 10.1016/j.immuni.2013.05.016. View

3.
Gross C, Mishra R, Schneider K, Medard G, Wettmarshausen J, Dittlein D . K Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria. Immunity. 2016; 45(4):761-773. DOI: 10.1016/j.immuni.2016.08.010. View

4.
Agostini L, Martinon F, Burns K, McDermott M, Hawkins P, Tschopp J . NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004; 20(3):319-25. DOI: 10.1016/s1074-7613(04)00046-9. View

5.
Sandall C, Ziehr B, MacDonald J . ATP-Binding and Hydrolysis in Inflammasome Activation. Molecules. 2020; 25(19). PMC: 7583971. DOI: 10.3390/molecules25194572. View