» Articles » PMID: 26152715

Metformin Inhibits the Production of Reactive Oxygen Species from NADH:Ubiquinone Oxidoreductase to Limit Induction of Interleukin-1β (IL-1β) and Boosts Interleukin-10 (IL-10) in Lipopolysaccharide (LPS)-activated Macrophages

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2015 Jul 9
PMID 26152715
Citations 159
Authors
Affiliations
Soon will be listed here.
Abstract

Metformin, a frontline treatment for type II diabetes mellitus, decreases production of the pro-form of the inflammatory cytokine IL-1β in response to LPS in macrophages. We found that it specifically inhibited pro-IL-1β production, having no effect on TNF-α. Furthermore, metformin boosted induction of the anti-inflammatory cytokine IL-10 in response to LPS. We ruled out a role for AMP-activated protein kinase (AMPK) in the effect of metformin because activation of AMPK with A769662 did not mimic metformin here. Furthermore, metformin was still inhibitory in AMKPα1- or AMPKβ1-deficient cells. The activity of NADH:ubiquinone oxidoreductase (complex I) was inhibited by metformin. Another complex I inhibitor, rotenone, mimicked the effect of metformin on pro-IL-1β and IL-10. LPS induced reactive oxygen species production, an effect inhibited by metformin or rotenone pretreatment. MitoQ, a mitochondrially targeted antioxidant, decreased LPS-induced IL-1β without affecting TNF-α. These results, therefore, implicate complex I in LPS action in macrophages.

Citing Articles

In-depth proteomic profiling identifies potentiation of the LPS response by 7-ketocholesterol.

Phair I, Sovakova M, Alqurashi N, Nisr R, McNeilly A, Lamont D J Mol Cell Cardiol Plus. 2025; 11:100285.

PMID: 39991505 PMC: 11847031. DOI: 10.1016/j.jmccpl.2025.100285.


Macrophage SUCLA2 coupled glutaminolysis manipulates obesity through AMPK.

Peng C, Jiang H, Jing L, Yang W, Guan X, Wang H Nat Commun. 2025; 16(1):1738.

PMID: 39966410 PMC: 11836283. DOI: 10.1038/s41467-025-57044-w.


Mitochondrial respiratory complex III sustains IL-10 production in activated macrophages and promotes tumor-mediated immune evasion.

Zotta A, Toller-Kawahisa J, Palsson-McDermott E, OCarroll S, Henry O, Day E Sci Adv. 2025; 11(4):eadq7307.

PMID: 39841829 PMC: 11789823. DOI: 10.1126/sciadv.adq7307.


The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential.

Liu A, Tan B, Yang P, Tian N, Li J, Wang S Front Immunol. 2024; 15:1487576.

PMID: 39544947 PMC: 11560457. DOI: 10.3389/fimmu.2024.1487576.


(Multi-) omics studies of ILC2s in inflammation and metabolic diseases.

Kral M, van der Vorst E, Weber C, Doring Y Front Cell Dev Biol. 2024; 12:1473616.

PMID: 39529633 PMC: 11551558. DOI: 10.3389/fcell.2024.1473616.


References
1.
Hundal R, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V . Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000; 49(12):2063-9. PMC: 2995498. DOI: 10.2337/diabetes.49.12.2063. View

2.
Hawley S, Fullerton M, Ross F, Schertzer J, Chevtzoff C, Walker K . The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012; 336(6083):918-22. PMC: 3399766. DOI: 10.1126/science.1215327. View

3.
Park S, Gammon S, Knippers J, Paulsen S, Rubink D, Winder W . Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol (1985). 2002; 92(6):2475-82. DOI: 10.1152/japplphysiol.00071.2002. View

4.
Hirosumi J, Tuncman G, Chang L, Gorgun C, Uysal K, Maeda K . A central role for JNK in obesity and insulin resistance. Nature. 2002; 420(6913):333-6. DOI: 10.1038/nature01137. View

5.
Hawley S, Boudeau J, Reid J, Mustard K, Udd L, Makela T . Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003; 2(4):28. PMC: 333410. DOI: 10.1186/1475-4924-2-28. View