» Articles » PMID: 35459865

Surface Restructuring of a Perovskite-type Air Electrode for Reversible Protonic Ceramic Electrochemical Cells

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Apr 23
PMID 35459865
Authors
Affiliations
Soon will be listed here.
Abstract

Reversible protonic ceramic electrochemical cells (R-PCECs) are ideally suited for efficient energy storage and conversion; however, one of the limiting factors to high performance is the poor stability and insufficient electrocatalytic activity for oxygen reduction and evolution of the air electrode exposed to the high concentration of steam. Here we report our findings in enhancing the electrochemical activity and durability of a perovskite-type air electrode, BaCoFeNbO (BCFN), via a water-promoted surface restructuring process. Under properly-controlled operating conditions, the BCFN electrode is naturally restructured to an Nb-rich BCFN electrode covered with Nb-deficient BCFN nanoparticles. When used as the air electrode for a fuel-electrode-supported R-PCEC, good performances are demonstrated at 650 °C, achieving a peak power density of 1.70 W cm in the fuel cell mode and a current density of 2.8 A cm at 1.3 V in the electrolysis mode while maintaining reasonable Faradaic efficiencies and promising durability.

Citing Articles

Redesigning protonic ceramic electrochemical cells to lower the operating temperature.

Liu F, Diercks D, Kumar P, Seong A, Jabbar M, Gumeci C Sci Adv. 2025; 11(2):eadq2507.

PMID: 39792665 PMC: 11721582. DOI: 10.1126/sciadv.adq2507.


Boosting Electrochemical Performance via Extra-Role of La-Doped CeO Interlayer for "Oxygen Provider" at High-Current SOFC Operation.

Nguyen X, Lee S, Kim S, Park J, Koo B, Lee S Adv Sci (Weinh). 2024; 11(46):e2402348.

PMID: 39331567 PMC: 11633512. DOI: 10.1002/advs.202402348.


Deciphering in-situ surface reconstruction in two-dimensional CdPS nanosheets for efficient biomass hydrogenation.

Sendeku M, Harrath K, Dajan F, Wu B, Hussain S, Gao N Nat Commun. 2024; 15(1):5174.

PMID: 38890357 PMC: 11189421. DOI: 10.1038/s41467-024-49510-8.


Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells.

Liu Z, Bai Y, Sun H, Guan D, Li W, Huang W Nat Commun. 2024; 15(1):472.

PMID: 38212300 PMC: 10784466. DOI: 10.1038/s41467-024-44767-5.


Sintering-induced cation displacement in protonic ceramics and way for its suppression.

Liu Z, Song Y, Xiong X, Zhang Y, Cui J, Zhu J Nat Commun. 2023; 14(1):7984.

PMID: 38042884 PMC: 10693594. DOI: 10.1038/s41467-023-43725-x.


References
1.
Duan C, Kee R, Zhu H, Karakaya C, Chen Y, Ricote S . Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature. 2018; 557(7704):217-222. DOI: 10.1038/s41586-018-0082-6. View

2.
Vollestad E, Strandbakke R, Tarach M, Catalan-Martinez D, Fontaine M, Beeaff D . Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat Mater. 2019; 18(7):752-759. DOI: 10.1038/s41563-019-0388-2. View

3.
Shao Z, Haile S . A high-performance cathode for the next generation of solid-oxide fuel cells. Nature. 2004; 431(7005):170-3. DOI: 10.1038/nature02863. View

4.
Li M, Zhao M, Li F, Zhou W, Peterson V, Xu X . A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat Commun. 2017; 8:13990. PMC: 5216129. DOI: 10.1038/ncomms13990. View

5.
Lyagaeva J, Danilov N, Tarutin A, Vdovin G, Medvedev D, Demin A . Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped NdBaFeO. Dalton Trans. 2018; 47(24):8149-8157. DOI: 10.1039/c8dt01511b. View