6.
Zhao J, Xu X, Zhou W, Blakey I, Liu S, Zhu Z
. Proton-Conducting La-Doped Ceria-Based Internal Reforming Layer for Direct Methane Solid Oxide Fuel Cells. ACS Appl Mater Interfaces. 2017; 9(39):33758-33765.
DOI: 10.1021/acsami.7b07938.
View
7.
Bian W, Wu W, Wang B, Tang W, Zhou M, Jin C
. Revitalizing interface in protonic ceramic cells by acid etch. Nature. 2022; 604(7906):479-485.
DOI: 10.1038/s41586-022-04457-y.
View
8.
Seong A, Kim J, Jeong D, Sengodan S, Liu M, Choi S
. Electrokinetic Proton Transport in Triple (H /O /e ) Conducting Oxides as a Key Descriptor for Highly Efficient Protonic Ceramic Fuel Cells. Adv Sci (Weinh). 2021; 8(11):e2004099.
PMC: 8188232.
DOI: 10.1002/advs.202004099.
View
9.
Vollestad E, Strandbakke R, Tarach M, Catalan-Martinez D, Fontaine M, Beeaff D
. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat Mater. 2019; 18(7):752-759.
DOI: 10.1038/s41563-019-0388-2.
View
10.
Bae K, Jang D, Choi H, Kim D, Hong J, Kim B
. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat Commun. 2017; 8:14553.
PMC: 5331335.
DOI: 10.1038/ncomms14553.
View
11.
Hua B, Yan N, Li M, Sun Y, Zhang Y, Li J
. Anode-Engineered Protonic Ceramic Fuel Cell with Excellent Performance and Fuel Compatibility. Adv Mater. 2016; 28(40):8922-8926.
DOI: 10.1002/adma.201602103.
View
12.
Aoki Y, Yamaguchi T, Kobayashi S, Kowalski D, Zhu C, Habazaki H
. High-Efficiency Direct Ammonia Fuel Cells Based on BaZrCeYO /Pd Oxide-Metal Junctions. Glob Chall. 2019; 2(1):1700088.
PMC: 6607173.
DOI: 10.1002/gch2.201700088.
View
13.
Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z
. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr(0.1)Ce(0.7)Y(0.2-x)Yb(x)O(3-delta). Science. 2009; 326(5949):126-9.
DOI: 10.1126/science.1174811.
View
14.
Duan C, Kee R, Zhu H, Karakaya C, Chen Y, Ricote S
. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature. 2018; 557(7704):217-222.
DOI: 10.1038/s41586-018-0082-6.
View
15.
Kim J, Sengodan S, Kwon G, Ding D, Shin J, Liu M
. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. ChemSusChem. 2014; 7(10):2811-5.
DOI: 10.1002/cssc.201402351.
View
16.
Clark D, Malerod-Fjeld H, Budd M, Yuste-Tirados I, Beeaff D, Aamodt S
. Single-step hydrogen production from NH, CH, and biogas in stacked proton ceramic reactors. Science. 2022; 376(6591):390-393.
DOI: 10.1126/science.abj3951.
View
17.
Pei K, Zhou Y, Xu K, Zhang H, Ding Y, Zhao B
. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nat Commun. 2022; 13(1):2207.
PMC: 9033792.
DOI: 10.1038/s41467-022-29866-5.
View
18.
Wachsman E, Lee K
. Lowering the temperature of solid oxide fuel cells. Science. 2011; 334(6058):935-9.
DOI: 10.1126/science.1204090.
View
19.
Zhang Y, Chen B, Guan D, Xu M, Ran R, Ni M
. Thermal-expansion offset for high-performance fuel cell cathodes. Nature. 2021; 591(7849):246-251.
DOI: 10.1038/s41586-021-03264-1.
View
20.
Li K, Jia L, Wang X, Pu J, Chi B, Li J
. Enhanced methane steam reforming activity and electrochemical performance of NiFe-supported solid oxide fuel cells with infiltrated Ni-TiO particles. Sci Rep. 2016; 6:35981.
PMC: 5075869.
DOI: 10.1038/srep35981.
View