» Articles » PMID: 28045088

A Niobium and Tantalum Co-doped Perovskite Cathode for Solid Oxide Fuel Cells Operating Below 500 °C

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Jan 4
PMID 28045088
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The slow activity of cathode materials is one of the most significant barriers to realizing the operation of solid oxide fuel cells below 500 °C. Here we report a niobium and tantalum co-substituted perovskite SrCoNbTaO as a cathode, which exhibits high electroactivity. This cathode has an area-specific polarization resistance as low as ∼0.16 and ∼0.68 Ω cm in a symmetrical cell and peak power densities of 1.2 and 0.7 W cm in a GdCeO-based anode-supported fuel cell at 500 and 450 °C, respectively. The high performance is attributed to an optimal balance of oxygen vacancies, ionic mobility and surface electron transfer as promoted by the synergistic effects of the niobium and tantalum. This work also points to an effective strategy in the design of cathodes for low-temperature solid oxide fuel cells.

Citing Articles

Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures.

Li Z, Mao X, Feng D, Li M, Xu X, Luo Y Nat Commun. 2024; 15(1):9318.

PMID: 39472575 PMC: 11522418. DOI: 10.1038/s41467-024-53578-7.


Ca-Doping Cobalt-Free Double Perovskite Oxide as a Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cell.

Xue L, Li S, An S, Guo Q, Li M, Li N Molecules. 2024; 29(13).

PMID: 38998942 PMC: 11243253. DOI: 10.3390/molecules29132991.


A new strategy for improving the electrochemical performance of perovskite cathodes: pre-calcining the perovskite oxide precursor in a nitrogen atmosphere.

Chen J, Zhao Z, Feng Y, Sun X, Li B, Wan D Nanoscale Adv. 2022; 3(17):5027-5035.

PMID: 36132338 PMC: 9416970. DOI: 10.1039/d1na00031d.


Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells.

Pei K, Zhou Y, Xu K, Zhang H, Ding Y, Zhao B Nat Commun. 2022; 13(1):2207.

PMID: 35459865 PMC: 9033792. DOI: 10.1038/s41467-022-29866-5.


Nb and Cu co-doped (La,Sr)(Co,Fe)O: a stable electrode for solid oxide cells.

Neacsa D, Abbassi K, Guesmi H, Coddet P, Vulliet J, Amrani M RSC Adv. 2022; 11(18):10479-10488.

PMID: 35423574 PMC: 8695701. DOI: 10.1039/d0ra10313f.


References
1.
Perdew , Burke , Ernzerhof . Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868. DOI: 10.1103/PhysRevLett.77.3865. View

2.
Lee K, Lidie A, Yoon H, Wachsman E . Rational design of lower-temperature solid oxide fuel cell cathodes via nanotailoring of co-assembled composite structures. Angew Chem Int Ed Engl. 2014; 53(49):13463-7. DOI: 10.1002/anie.201408210. View

3.
Lee J, Park J, Shul Y . Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm(-2) at 550 °C. Nat Commun. 2014; 5:4045. DOI: 10.1038/ncomms5045. View

4.
Hibino , Hashimoto , Inoue , Tokuno , Yoshida , SANO . A low-operating-temperature solid oxide fuel cell in hydrocarbon-Air mixtures. Science. 2000; 288(5473):2031-3. DOI: 10.1126/science.288.5473.2031. View

5.
Zhang X, Liu L, Zhao Z, Tu B, Ou D, Cui D . Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode. Nano Lett. 2015; 15(3):1703-9. DOI: 10.1021/nl5043566. View