» Articles » PMID: 35414014

Strand Asymmetry Influences Mismatch Resolution During a Single-strand Annealing

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2022 Apr 13
PMID 35414014
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Biases of DNA repair can shape the nucleotide landscape of genomes at evolutionary timescales. The molecular mechanisms of those biases are still poorly understood because it is difficult to isolate the contributions of DNA repair from those of DNA damage.

Results: Here, we develop a genome-wide assay whereby the same DNA lesion is repaired in different genomic contexts. We insert thousands of barcoded transposons carrying a reporter of DNA mismatch repair in the genome of mouse embryonic stem cells. Upon inducing a double-strand break between tandem repeats, a mismatch is generated if the break is repaired through single-strand annealing. The resolution of the mismatch showed a 60-80% bias in favor of the strand with the longest 3' flap. The location of the lesion in the genome and the type of mismatch had little influence on the bias. Instead, we observe a complete reversal of the bias when the longest 3' flap is moved to the opposite strand by changing the position of the double-strand break in the reporter.

Conclusions: These results suggest that the processing of the double-strand break has a major influence on the repair of mismatches during a single-strand annealing.

Citing Articles

Machine learning prediction of prime editing efficiency across diverse chromatin contexts.

Mathis N, Allam A, Talas A, Kissling L, Benvenuto E, Schmidheini L Nat Biotechnol. 2024; .

PMID: 38907037 DOI: 10.1038/s41587-024-02268-2.


Nonhomologous tails direct heteroduplex rejection and mismatch correction during single-strand annealing in Saccharomyces cerevisiae.

Sapede E, Sugawara N, Tyers R, Nakajima Y, Afreen M, Romero Escobar J PLoS Genet. 2024; 20(2):e1010527.

PMID: 38315739 PMC: 10868807. DOI: 10.1371/journal.pgen.1010527.


Strand asymmetry influences mismatch resolution during a single-strand annealing.

Pokusaeva V, Diez A, Espinar L, Perez A, Filion G Genome Biol. 2022; 23(1):93.

PMID: 35414014 PMC: 9001825. DOI: 10.1186/s13059-022-02665-3.


Protocol: A Multiplexed Reporter Assay to Study Effects of Chromatin Context on DNA Double-Strand Break Repair.

Schep R, Leemans C, Brinkman E, van Schaik T, van Steensel B Front Genet. 2022; 12:785947.

PMID: 35173762 PMC: 8842231. DOI: 10.3389/fgene.2021.785947.


Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance.

Schep R, Brinkman E, Leemans C, Vergara X, van der Weide R, Morris B Mol Cell. 2021; 81(10):2216-2230.e10.

PMID: 33848455 PMC: 8153251. DOI: 10.1016/j.molcel.2021.03.032.

References
1.
Putnam C . Strand discrimination in DNA mismatch repair. DNA Repair (Amst). 2021; 105:103161. PMC: 8785607. DOI: 10.1016/j.dnarep.2021.103161. View

2.
Ramstein J, Lavery R . Energetic coupling between DNA bending and base pair opening. Proc Natl Acad Sci U S A. 1988; 85(19):7231-5. PMC: 282158. DOI: 10.1073/pnas.85.19.7231. View

3.
Galtier N, Piganeau G, Mouchiroud D, Duret L . GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics. 2001; 159(2):907-11. PMC: 1461818. DOI: 10.1093/genetics/159.2.907. View

4.
Anand R, Beach A, Li K, Haber J . Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature. 2017; 544(7650):377-380. PMC: 5544500. DOI: 10.1038/nature22046. View

5.
Meyerhans A, Vartanian J, Wain-Hobson S . DNA recombination during PCR. Nucleic Acids Res. 1990; 18(7):1687-91. PMC: 330584. DOI: 10.1093/nar/18.7.1687. View