» Articles » PMID: 35385350

Generalized Scaling of Spin Qubit Coherence in over 12,000 Host Materials

Overview
Specialty Science
Date 2022 Apr 6
PMID 35385350
Authors
Affiliations
Soon will be listed here.
Abstract

SignificanceAtomic defects in solid-state materials are promising candidates as quantum bits, or qubits. New materials are actively being investigated as hosts for new defect qubits; however, there are no unifying guidelines that can quantitatively predict qubit performance in a new material. One of the most critical property of qubits is their quantum coherence. While cluster correlation expansion (CCE) techniques are useful to simulate the coherence of electron spins in defects, they are computationally expensive to investigate broad classes of stable materials. Using CCE simulations, we reveal a general scaling relation between the electron spin coherence time and the properties of qubit host materials that enables rapid and quantitative exploration of new materials hosting spin defects.

Citing Articles

Recent advances in the theory of solid-state defect qubits.

Gali A Nanophotonics. 2024; 12(3):359-397.

PMID: 39635404 PMC: 11501427. DOI: 10.1515/nanoph-2022-0723.


The contribution of methyl groups to electron spin decoherence of nitroxides in glassy matrices.

Jahn S, Stowell R, Stoll S J Chem Phys. 2024; 161(17).

PMID: 39503471 PMC: 11556899. DOI: 10.1063/5.0240801.


Columnar excitation fluorescence microscope for accurate evaluation of quantum properties of color centers in bulk materials.

Masuyama Y, Shinei C, Ishii S, Abe H, Taniguchi T, Teraji T Sci Rep. 2024; 14(1):18135.

PMID: 39103449 PMC: 11300461. DOI: 10.1038/s41598-024-68610-5.


Discovery of atomic clock-like spin defects in simple oxides from first principles.

Davidsson J, Onizhuk M, Vorwerk C, Galli G Nat Commun. 2024; 15(1):4812.

PMID: 38844443 PMC: 11156963. DOI: 10.1038/s41467-024-49057-8.


A substitutional quantum defect in WS discovered by high-throughput computational screening and fabricated by site-selective STM manipulation.

Thomas J, Chen W, Xiong Y, Barker B, Zhou J, Chen W Nat Commun. 2024; 15(1):3556.

PMID: 38670956 PMC: 11519662. DOI: 10.1038/s41467-024-47876-3.


References
1.
Koehl W, Buckley B, Heremans F, Calusine G, Awschalom D . Room temperature coherent control of defect spin qubits in silicon carbide. Nature. 2011; 479(7371):84-7. DOI: 10.1038/nature10562. View

2.
Zhao N, Hu J, Ho S, Wan J, Liu R . Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nat Nanotechnol. 2011; 6(4):242-6. DOI: 10.1038/nnano.2011.22. View

3.
Anderson C, Bourassa A, Miao K, Wolfowicz G, Mintun P, Crook A . Electrical and optical control of single spins integrated in scalable semiconductor devices. Science. 2019; 366(6470):1225-1230. DOI: 10.1126/science.aax9406. View

4.
Wolfowicz G, Tyryshkin A, George R, Riemann H, Abrosimov N, Becker P . Atomic clock transitions in silicon-based spin qubits. Nat Nanotechnol. 2013; 8(8):561-4. DOI: 10.1038/nnano.2013.117. View

5.
Tamarat P, Gaebel T, Rabeau J, Khan M, Greentree A, Wilson H . Stark shift control of single optical centers in diamond. Phys Rev Lett. 2006; 97(8):083002. DOI: 10.1103/PhysRevLett.97.083002. View