Quantum Decoherence Dynamics of Divacancy Spins in Silicon Carbide
Overview
Affiliations
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the Si and C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
Recent advances in the theory of solid-state defect qubits.
Gali A Nanophotonics. 2024; 12(3):359-397.
PMID: 39635404 PMC: 11501427. DOI: 10.1515/nanoph-2022-0723.
Discovery of atomic clock-like spin defects in simple oxides from first principles.
Davidsson J, Onizhuk M, Vorwerk C, Galli G Nat Commun. 2024; 15(1):4812.
PMID: 38844443 PMC: 11156963. DOI: 10.1038/s41467-024-49057-8.
Ligand field design enables quantum manipulation of spins in Ni complexes.
Wojnar M, Kundu K, Kairalapova A, Wang X, Ozarowski A, Berkelbach T Chem Sci. 2024; 15(4):1374-1383.
PMID: 38274078 PMC: 10806831. DOI: 10.1039/d3sc04919a.
Engineering the formation of spin-defects from first principles.
Zhang C, Gygi F, Galli G Nat Commun. 2023; 14(1):5985.
PMID: 37752139 PMC: 10522650. DOI: 10.1038/s41467-023-41632-9.
Saha P, Majety S, Radulaski M Sci Rep. 2023; 13(1):4112.
PMID: 36914853 PMC: 10011533. DOI: 10.1038/s41598-023-31362-9.