Genetic Diversity, Distribution, and Genomic Characterization of Antibiotic Resistance and Virulence of Clinical Strains in Kenya
Overview
Authors
Affiliations
is a leading cause of nosocomial infections worldwide. It can produce a range of debilitating infections, have a propensity for developing antimicrobial resistance, and present with a variety of potent virulence factors. This study investigated the sequence types (ST), phenotypic antimicrobial susceptibility profiles, and resistance and virulence genes among clinical isolates from urinary tract and skin and soft tissue infections. Fifty-six clinical isolates were obtained from six medical centers across five counties in Kenya between 2015 and 2020. Whole-genome sequencing (WGS) was performed to conduct genomic characterization, sequence typing, and phylogenetic analysis of the isolates. Results showed the presence of globally distributed high-risk clones (ST244 and ST357), local high-risk clones (ST2025, ST455, and ST233), and a novel multidrug-resistant (MDR) clone carrying virulence genes (ST3674). Furthermore, 31% of the study isolates were found to be MDR with phenotypic resistance to a variety of antibiotics, including piperacillin (79%), ticarcillin-clavulanic acid (57%), meropenem (34%), levofloxacin (70%), and cefepime (32%). Several resistance genes were identified, including carbapenemases (ST1203) and (ST357), fluoroquinolone genes, , and , while 14 and 22 different chromosomal mutations were detected in the and genes, respectively. All isolates contained at least three virulence genes. Among the virulence genes identified, was the most abundant (50/56, 89%). About 21% (12/56) of the isolates had the - genotype, while 73% (41/56) of the isolates had the - genotype. This study also discovered 12 novel lineages of , of which one (ST3674) demonstrated both extensive antimicrobial resistance and the highest number of virulence genes (236/242, 98%). Although most high-risk clones were detected in Nairobi County, high-risk and clones of interest were found throughout the country, indicating the local spread of global epidemic clones and the emergence of new strains. Thus, this study illustrates the urgent need for coordinated local, regional, and international antimicrobial resistance surveillance efforts.
High-risk clones harboring β-lactamases: 2024 update.
Flores-Vega V, Partida-Sanchez S, Ares M, Ortiz-Navarrete V, Rosales-Reyes R Heliyon. 2025; 11(1):e41540.
PMID: 39850428 PMC: 11754179. DOI: 10.1016/j.heliyon.2024.e41540.
Olana M, Asrat D, Swedberg G BMC Infect Dis. 2024; 24(1):1472.
PMID: 39732630 PMC: 11682647. DOI: 10.1186/s12879-024-10359-3.
Too R, Kariuki S, Gitao G, Bebora L, Mollenkopf D, Wittum T PLoS One. 2024; 19(11):e0310026.
PMID: 39541397 PMC: 11563437. DOI: 10.1371/journal.pone.0310026.
Bharadwaj V, Suvvari T, Kandi V, P C, Dharsandia M Cureus. 2024; 16(10):e71118.
PMID: 39525128 PMC: 11548977. DOI: 10.7759/cureus.71118.
Essoh C, Hauck Y, Ouassa T, Toure D, Djatchi R, Loukou G Diagnostics (Basel). 2024; 14(20).
PMID: 39451606 PMC: 11506784. DOI: 10.3390/diagnostics14202284.