» Articles » PMID: 35344434

Let-7 Underlies Metformin-induced Inhibition of Hepatic Glucose Production

Overview
Specialty Science
Date 2022 Mar 28
PMID 35344434
Authors
Affiliations
Soon will be listed here.
Abstract

SignificanceA clear mechanistic understanding of metformin's antidiabetic effects is lacking. This is because suprapharmacological concentrations of metformin have been used in most studies. Using mouse models and human primary hepatocytes, we show that metformin, at clinically relevant doses, suppresses hepatic glucose production by activating a conserved regulatory pathway encompassing let-7, TET3, and a fetal isoform of hepatocyte nuclear factor 4 alpha (HNF4α). We demonstrate that metformin no longer has potent antidiabetic actions in a liver-specific let-7 loss-of-function mouse model and that hepatic delivery of let-7 ameliorates hyperglycemia and improves glucose homeostasis. Our results thus reveal an important role of the hepatic let-7/TET3/HNF4α axis in mediating the therapeutic effects of metformin and suggest that targeting this axis may be a potential therapeutic for diabetes.

Citing Articles

Unravelling the association between metformin and pan-cancers: Mendelian randomization combined with NHANES database analysis.

Xiang J, An Y, Sun J, Xu J, Xiong Y, Wang S Discov Oncol. 2025; 16(1):279.

PMID: 40055297 PMC: 11889302. DOI: 10.1007/s12672-025-02021-4.


Camel milk exosomes regulate glucose metabolism by inhibiting mitochondrial complex I in hepatocytes.

Yang B, Du S, Liu L, Wang J, Er D BMC Vet Res. 2025; 21(1):85.

PMID: 39987092 PMC: 11846279. DOI: 10.1186/s12917-025-04555-9.


MMP9 drives ferroptosis by regulating GPX4 and iron signaling.

Gawargi F, Mishra P iScience. 2024; 27(9):110622.

PMID: 39252956 PMC: 11382059. DOI: 10.1016/j.isci.2024.110622.


TET3-overexpressing macrophages promote endometriosis.

Lv H, Liu B, Dai Y, Li F, Bellone S, Zhou Y J Clin Invest. 2024; 134(21).

PMID: 39141428 PMC: 11527447. DOI: 10.1172/JCI181839.


Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies.

Amengual-Cladera E, Morla-Barcelo P, Moran-Costoya A, Sastre-Serra J, Pons D, Valle A Biology (Basel). 2024; 13(5).

PMID: 38785784 PMC: 11117706. DOI: 10.3390/biology13050302.


References
1.
Chirshev E, Oberg K, Ioffe Y, Unternaehrer J . Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med. 2019; 8(1):24. PMC: 6715759. DOI: 10.1186/s40169-019-0240-y. View

2.
Jensen J, Sundelin E, Jakobsen S, Gormsen L, Munk O, Frokiaer J . [11C]-Labeled Metformin Distribution in the Liver and Small Intestine Using Dynamic Positron Emission Tomography in Mice Demonstrates Tissue-Specific Transporter Dependency. Diabetes. 2016; 65(6):1724-30. DOI: 10.2337/db16-0032. View

3.
Graham G, Punt J, Arora M, Day R, Doogue M, Duong J . Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011; 50(2):81-98. DOI: 10.2165/11534750-000000000-00000. View

4.
Madiraju A, Erion D, Rahimi Y, Zhang X, Braddock D, Albright R . Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014; 510(7506):542-6. PMC: 4074244. DOI: 10.1038/nature13270. View

5.
Hooykaas M, Soppe J, De Buhr H, Kruse E, Wiertz E, Lebbink R . RNA accessibility impacts potency of Tough Decoy microRNA inhibitors. RNA Biol. 2018; 15(11):1410-1419. PMC: 6284568. DOI: 10.1080/15476286.2018.1537746. View