» Articles » PMID: 35312219

Correlative Electrochemical Microscopy for the Elucidation of the Local Ionic and Electronic Properties of the Solid Electrolyte Interphase in Li-Ion Batteries

Overview
Specialty Chemistry
Date 2022 Mar 21
PMID 35312219
Authors
Affiliations
Soon will be listed here.
Abstract

The solid-electrolyte interphase (SEI) plays a key role in the stability of lithium-ion batteries as the SEI prevents the continuous degradation of the electrolyte at the anode. The SEI acts as an insulating layer for electron transfer, still allowing the ionic flux through the layer. We combine the feedback and multi-frequency alternating-current modes of scanning electrochemical microscopy (SECM) for the first time to assess quantitatively the local electronic and ionic properties of the SEI varying the SEI formation conditions and the used electrolytes in the field of Li-ion batteries (LIB). Correlations between the electronic and ionic properties of the resulting SEI on a model Cu electrode demonstrates the unique feasibility of the proposed strategy to provide the two essential properties of an SEI: ionic and electronic conductivity in dependence on the formation conditions, which is anticipated to exhibit a significant impact on the field of LIBs.

Citing Articles

Radially distributed charging time constants at an electrode-solution interface.

Niu B, Xie R, Ren B, Long Y, Wang W Nat Commun. 2024; 15(1):5633.

PMID: 38965237 PMC: 11224254. DOI: 10.1038/s41467-024-50028-2.


Quantifying Interfacial Ion Transfer at Operating Potassium-Insertion Battery Electrodes within Highly Concentrated Aqueous Solutions.

Gossage Z, Tatara R, Hosaka T, Komaba S ACS Appl Mater Interfaces. 2024; 16(26):33379-33387.

PMID: 38885040 PMC: 11231980. DOI: 10.1021/acsami.4c03645.


Direct in situ measurements of electrical properties of solid-electrolyte interphase on lithium metal anodes.

Xu Y, Jia H, Gao P, Galvez-Aranda D, Beltran S, Cao X Nat Energy. 2024; 8(12):1345-1354.

PMID: 38249622 PMC: 10798234. DOI: 10.1038/s41560-023-01361-1.


Unveiling the electronic properties of native solid electrolyte interphase layers on Mg metal electrodes using local electrochemistry.

Santana Santos C, Romio M, Surace Y, Eshraghi N, Amores M, Mautner A Chem Sci. 2023; 14(36):9923-9932.

PMID: 37736636 PMC: 10510847. DOI: 10.1039/d3sc02840b.


An Integrated, Exchangeable Three-Electrode Electrochemical Setup for AFM-Based Scanning Electrochemical Microscopy.

Karg A, Godrich S, Dennstedt P, Helfricht N, Retsch M, Papastavrou G Sensors (Basel). 2023; 23(11).

PMID: 37299955 PMC: 10255986. DOI: 10.3390/s23115228.


References
1.
Menkin S, OKeefe C, Gunnarsdottir A, Dey S, Pesci F, Shen Z . Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries. J Phys Chem C Nanomater Interfaces. 2021; 125(30):16719-16732. PMC: 8392351. DOI: 10.1021/acs.jpcc.1c03877. View

2.
Ventosa E, Madej E, Zampardi G, Mei B, Weide P, Antoni H . Solid Electrolyte Interphase (SEI) at TiO Electrodes in Li-Ion Batteries: Defining Apparent and Effective SEI Based on Evidence from X-ray Photoemission Spectroscopy and Scanning Electrochemical Microscopy. ACS Appl Mater Interfaces. 2016; 9(3):3123-3130. DOI: 10.1021/acsami.6b13306. View

3.
Zampardi G, Ventosa E, La Mantia F, Schuhmann W . In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy. Chem Commun (Camb). 2013; 49(81):9347-9. DOI: 10.1039/c3cc44576c. View

4.
Bulter H, Peters F, Schwenzel J, Wittstock G . Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. Angew Chem Int Ed Engl. 2014; 53(39):10531-5. DOI: 10.1002/anie.201403935. View

5.
Liu D, Shadike Z, Lin R, Qian K, Li H, Li K . Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Adv Mater. 2019; 31(28):e1806620. DOI: 10.1002/adma.201806620. View