» Articles » PMID: 38249622

Direct in Situ Measurements of Electrical Properties of Solid-electrolyte Interphase on Lithium Metal Anodes

Abstract

The solid-electrolyte interphase (SEI) critically governs the performance of rechargeable batteries. An ideal SEI is expected to be electrically insulative to prevent persistently parasitic reactions between the electrode and the electrolyte and ionically conductive to facilitate Faradaic reactions of the electrode. However, the true nature of the electrical properties of the SEI remains hitherto unclear due to the lack of a direct characterization method. Here we use in situ bias transmission electron microscopy to directly measure the electrical properties of SEIs formed on copper and lithium substrates. We reveal that SEIs show a voltage-dependent differential conductance. A higher rate of differential conductance induces a thicker SEI with an intricate topographic feature, leading to an inferior Coulombic efficiency and cycling stability in Li∣∣Cu and Li∣∣LiNiMnCoO cells. Our work provides insight into the targeted design of the SEI with desired characteristics towards better battery performance.

Citing Articles

Graphdiyne biomaterials: from characterization to properties and applications.

Zhao L, Fan Y, Zhang X, Li C, Cheng X, Guo F J Nanobiotechnology. 2025; 23(1):169.

PMID: 40038692 PMC: 11881411. DOI: 10.1186/s12951-025-03227-y.


Unravelling complex mechanisms in materials processes with cryogenic electron microscopy.

Lee M, Jeon Y, Kim S, Jung I, Kang S, Jeong S Chem Sci. 2024; 16(3):1017-1035.

PMID: 39697416 PMC: 11651391. DOI: 10.1039/d4sc05188b.


SEI Formation and Lithium-Ion Electrodeposition Dynamics in Lithium Metal Batteries via First-Principles Kinetic Monte Carlo Modeling.

Perez-Beltran S, Kuai D, Balbuena P ACS Energy Lett. 2024; 9(11):5268-5278.

PMID: 39539633 PMC: 11555676. DOI: 10.1021/acsenergylett.4c02019.


Unraveling the Dynamic Properties of New-Age Energy Materials Chemistry Using Advanced In Situ Transmission Electron Microscopy.

Ramasundaram S, Jeevanandham S, Vijay N, Divya S, Jerome P, Oh T Molecules. 2024; 29(18).

PMID: 39339406 PMC: 11433656. DOI: 10.3390/molecules29184411.

References
1.
Cheng X, Zhang R, Zhao C, Zhang Q . Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem Rev. 2017; 117(15):10403-10473. DOI: 10.1021/acs.chemrev.7b00115. View

2.
Zhai X, Lei D, Zhang M, Liu J, Wu H, Yu Y . LoTToR: An Algorithm for Missing-Wedge Correction of the Low-Tilt Tomographic 3D Reconstruction of a Single-Molecule Structure. Sci Rep. 2020; 10(1):10489. PMC: 7320192. DOI: 10.1038/s41598-020-66793-1. View

3.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

4.
Liu X, Garcia-Mendez R, Lupini A, Cheng Y, Hood Z, Han F . Local electronic structure variation resulting in Li 'filament' formation within solid electrolytes. Nat Mater. 2021; 20(11):1485-1490. DOI: 10.1038/s41563-021-01019-x. View

5.
Cao X, Gao P, Ren X, Zou L, Engelhard M, Matthews B . Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proc Natl Acad Sci U S A. 2021; 118(9). PMC: 7936379. DOI: 10.1073/pnas.2020357118. View