» Articles » PMID: 35288686

A 9.2-GHz Clock Transition in a Lu(II) Molecular Spin Qubit Arising from a 3,467-MHz Hyperfine Interaction

Overview
Journal Nat Chem
Specialty Chemistry
Date 2022 Mar 15
PMID 35288686
Authors
Affiliations
Soon will be listed here.
Abstract

Spins in molecules are particularly attractive targets for next-generation quantum technologies, enabling chemically programmable qubits and potential for scale-up via self-assembly. Here we report the observation of one of the largest hyperfine interactions for a molecular system, A = 3,467 ± 50 MHz, as well as a very large associated clock transition. This is achieved through chemical control of the degree of s-orbital mixing into the spin-bearing d orbital associated with a series of spin-½ La(II) and Lu(II) complexes. Increased s-orbital character reduces spin-orbit coupling and enhances the electron-nuclear Fermi contact interaction. Both outcomes are advantageous for quantum applications. The former reduces spin-lattice relaxation, and the latter maximizes the hyperfine interaction, which, in turn, generates a 9-GHz clock transition, leading to an increase in phase memory time from 1.0 ± 0.4 to 12 ± 1 μs for one of the Lu(II) complexes. These findings suggest strategies for the development of molecular quantum technologies, akin to trapped ion systems.

Citing Articles

A comprehensive approach for elucidating the interplay between 4f and 4f 5d configurations in Ln complexes.

Beltran-Leiva M, Moore W, Jenkins T, Evans W, Albrecht T, Celis-Barros C Chem Sci. 2025; 16(4):2024-2033.

PMID: 39759928 PMC: 11697074. DOI: 10.1039/d4sc05438e.


Tetravalent Terbium Chelates: Stability Enhancement and Property Tuning.

Xue T, Ding Y, Jiang X, Tao L, Li J, Zheng Z Precis Chem. 2024; 1(10):583-591.

PMID: 39473575 PMC: 11504578. DOI: 10.1021/prechem.3c00065.


δ-Bonding modulates the electronic structure of formally divalent nd rare earth arene complexes.

MacKenzie R, Hajdu T, Seed J, Whitehead G, Adams R, Chilton N Chem Sci. 2024; .

PMID: 39220159 PMC: 11361033. DOI: 10.1039/d4sc03005b.


Application of the Adiabatic Connection Random Phase Approximation to Electron-Nucleus Hyperfine Coupling Constants.

Bruder F, Weigend F, Franzke Y J Phys Chem A. 2024; 128(34):7298-7310.

PMID: 39163640 PMC: 11372758. DOI: 10.1021/acs.jpca.4c03794.


Coherent spin-control of = 1 vanadium and molybdenum complexes.

Laorenza D, Mullin K, Weiss L, Bayliss S, Deb P, Awschalom D Chem Sci. 2024; .

PMID: 39144462 PMC: 11318652. DOI: 10.1039/d4sc03107e.


References
1.
Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R . Quantum supremacy using a programmable superconducting processor. Nature. 2019; 574(7779):505-510. DOI: 10.1038/s41586-019-1666-5. View

2.
Devoret M, Schoelkopf R . Superconducting circuits for quantum information: an outlook. Science. 2013; 339(6124):1169-74. DOI: 10.1126/science.1231930. View

3.
Wright K, Beck K, Debnath S, Amini J, Nam Y, Grzesiak N . Benchmarking an 11-qubit quantum computer. Nat Commun. 2019; 10(1):5464. PMC: 6884641. DOI: 10.1038/s41467-019-13534-2. View

4.
Carolan J, Harrold C, Sparrow C, Martin-Lopez E, Russell N, Silverstone J . QUANTUM OPTICS. Universal linear optics. Science. 2015; 349(6249):711-6. DOI: 10.1126/science.aab3642. View

5.
Yang K, Paul W, Phark S, Willke P, Bae Y, Choi T . Coherent spin manipulation of individual atoms on a surface. Science. 2019; 366(6464):509-512. DOI: 10.1126/science.aay6779. View