» Articles » PMID: 37997752

Thermally Stable Terbium(II) and Dysprosium(II) Bis-amidinate Complexes

Abstract

The thermostable four-coordinate divalent lanthanide (Ln) bis-amidinate complexes [Ln(Piso)] (Ln = Tb, Dy; Piso = {(NDipp)CBu}, Dipp = CHPr-2,6) were prepared by the reduction of parent five-coordinate Ln(III) precursors [Ln(Piso)I] (Ln = Tb, Dy) with KC; halide abstraction of [Ln(Piso)I] with [H(SiEt)][B(CF)] gave the respective Ln(III) complexes [Ln(Piso)][B(CF)]. All complexes were characterized by X-ray diffraction, ICP-MS, elemental analysis, SQUID magnetometry, UV-vis-NIR, ATR-IR, NMR, and EPR spectroscopy and CASSCF-SO calculations. These data consistently show that [Ln(Piso)] formally exhibit Ln(II) centers with 4f5d (Ln = Tb, = 8; Dy, = 9) valence electron configurations. We show that simple assignments of the f-d coupling to either - or - schemes are an oversimplification, especially in the presence of significant crystal field splitting. The coordination geometry of [Ln(Piso)] is intermediate between square planar and tetrahedral. Projecting from the quaternary carbon atoms of the CN ligand backbones shows near-linear C···Ln···C arrangements. This results in strong axial ligand fields to give effective energy barriers to magnetic reversal of 1920(91) K for the Tb(II) analogue and 1964(48) K for Dy(II), the highest values observed for mononuclear Ln(II) single-molecule magnets, eclipsing 1738 K for [Tb(CPr)]. We tentatively attribute the fast zero-field magnetic relaxation for these complexes at low temperatures to transverse fields, resulting in considerable mixing of states.

Citing Articles

A comprehensive approach for elucidating the interplay between 4f and 4f 5d configurations in Ln complexes.

Beltran-Leiva M, Moore W, Jenkins T, Evans W, Albrecht T, Celis-Barros C Chem Sci. 2025; 16(4):2024-2033.

PMID: 39759928 PMC: 11697074. DOI: 10.1039/d4sc05438e.


Rare earth benzene tetraanion-bridged amidinate complexes.

Jin P, Luo Q, Gransbury G, Winpenny R, Mills D, Zheng Y Chem Sci. 2024; 16(4):1907-1924.

PMID: 39722786 PMC: 11667736. DOI: 10.1039/d4sc05982d.


δ-Bonding modulates the electronic structure of formally divalent nd rare earth arene complexes.

MacKenzie R, Hajdu T, Seed J, Whitehead G, Adams R, Chilton N Chem Sci. 2024; .

PMID: 39220159 PMC: 11361033. DOI: 10.1039/d4sc03005b.


Construction of intermolecular σ-hole interactions in rare earth metallocene complexes using a 2,3,4,5-tetraiodopyrrolyl anion.

Delano 4th F, Benner F, Jang S, Greer S, Demir S Chem Sci. 2024; 15(33):13389-13404.

PMID: 39183902 PMC: 11339973. DOI: 10.1039/d4sc03786c.


Guanidinate Yttrium Complexes Containing Bipyridyl and Bis(benzimidazolyl) Radicals.

Delano 4th F, Deshapriya S, Demir S Inorg Chem. 2024; 63(21):9659-9669.

PMID: 38569134 PMC: 11134503. DOI: 10.1021/acs.inorgchem.4c00006.

References
1.
Moehring S, Beltran-Leiva M, Paez-Hernandez D, Arratia-Perez R, Ziller J, Evans W . Rare-Earth Metal(II) Aryloxides: Structure, Synthesis, and EPR Spectroscopy of [K(2.2.2-cryptand)][Sc(OC H tBu -2,6-Me-4) ]. Chemistry. 2018; 24(68):18059-18067. DOI: 10.1002/chem.201803807. View

2.
McClain K, Gould C, Chakarawet K, Teat S, Groshens T, Long J . High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium(iii) metallocenium single-molecule magnets. Chem Sci. 2018; 9(45):8492-8503. PMC: 6256727. DOI: 10.1039/c8sc03907k. View

3.
Ganivet C, Ballesteros B, de la Torre G, Clemente-Juan J, Coronado E, Torres T . Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic Tb(III) bis(phthalocyaninate). Chemistry. 2012; 19(4):1457-65. DOI: 10.1002/chem.201202600. View

4.
Moutet J, Schleinitz J, La Droitte L, Tricoire M, Pointillart F, Gendron F . Bis-cyclooctatetraenyl Thulium(II): Highly Reducing Lanthanide Sandwich Single Molecule Magnets. Angew Chem Int Ed Engl. 2022; 60(11):6042-6046. PMC: 7613950. DOI: 10.1002/anie.202015428. View

5.
Hitchcock P, Lappert M, Maron L, Protchenko A . Lanthanum does form stable molecular compounds in the +2 oxidation state. Angew Chem Int Ed Engl. 2008; 47(8):1488-91. DOI: 10.1002/anie.200704887. View