» Articles » PMID: 39220159

δ-Bonding Modulates the Electronic Structure of Formally Divalent Nd Rare Earth Arene Complexes

Overview
Journal Chem Sci
Specialty Chemistry
Date 2024 Sep 2
PMID 39220159
Authors
Affiliations
Soon will be listed here.
Abstract

Landmark advances in rare earth (RE) chemistry have shown that divalent complexes can be isolated with non-Aufbau 4f {5d/6s} electron configurations, facilitating remarkable bonding motifs and magnetic properties. We report a series of divalent bis-tethered arene complexes, [RE(NHAr )] (2RE; RE = Sc, Y, La, Sm, Eu, Tm, Yb; NHAr = {N(H)CH-2,6-(CH-2,4,6-Pr)}). Fluid solution EPR spectroscopy gives < 2.002 for 2Sc, 2Y, and 2La, consistent with formal nd configurations, calculations reveal metal-arene δ-bonding mixing of nd valence electrons into arene π* orbitals. Experimental and calculated EPR and UV-Vis-NIR spectroscopic properties for 2Y show that minor structural changes markedly alter the metal d contribution to the SOMO. This contrasts 4f {5d/6s} complexes where the valence d-based electron resides in a non-bonding orbital. Complexes 2Sm, 2Eu, 2Tm, and 2Yb contain highly-localised 4f ions with no appreciable metal-arene bonding by density functional calculations. These results show that the physicochemical properties of divalent rare earth arene complexes with both formal nd and 4f configurations are nuanced, may be controlled through ligand modification, and require a multi-pronged experimental and theoretical approach to fully rationalise.

Citing Articles

Uranium(III) and Uranium(IV) -Terphenylthiolate Complexes.

Reant B, Seed J, Whitehead G, Goodwin C Inorg Chem. 2025; 64(7):3161-3177.

PMID: 39919254 PMC: 11863384. DOI: 10.1021/acs.inorgchem.4c03085.


A comprehensive approach for elucidating the interplay between 4f and 4f 5d configurations in Ln complexes.

Beltran-Leiva M, Moore W, Jenkins T, Evans W, Albrecht T, Celis-Barros C Chem Sci. 2025; 16(4):2024-2033.

PMID: 39759928 PMC: 11697074. DOI: 10.1039/d4sc05438e.


Rare earth benzene tetraanion-bridged amidinate complexes.

Jin P, Luo Q, Gransbury G, Winpenny R, Mills D, Zheng Y Chem Sci. 2024; 16(4):1907-1924.

PMID: 39722786 PMC: 11667736. DOI: 10.1039/d4sc05982d.

References
1.
Keener M, Shivaraam R, Rajeshkumar T, Tricoire M, Scopelliti R, Zivkovic I . Multielectron Redox Chemistry of Uranium by Accessing the +II Oxidation State and Enabling Reduction to a U(I) Synthon. J Am Chem Soc. 2023; 145(29):16271-16283. DOI: 10.1021/jacs.3c05626. View

2.
Smith P, Hruby J, Evans W, Hill S, Minasian S . Identification of an X-Band Clock Transition in Cp'Pr Enabled by a 4f5d Configuration. J Am Chem Soc. 2024; 146(9):5781-5785. PMC: 10921394. DOI: 10.1021/jacs.3c12725. View

3.
Goodwin C, Chilton N, Natrajan L, Boulon M, Ziller J, Evans W . Investigation into the Effects of a Trigonal-Planar Ligand Field on the Electronic Properties of Lanthanide(II) Tris(silylamide) Complexes (Ln = Sm, Eu, Tm, Yb). Inorg Chem. 2017; 56(10):5959-5970. DOI: 10.1021/acs.inorgchem.7b00664. View

4.
Palumbo C, Halter D, Voora V, Chen G, Chan A, Fieser M . Metal versus Ligand Reduction in Ln Complexes of a Mesitylene-Anchored Tris(Aryloxide) Ligand. Inorg Chem. 2018; 57(5):2823-2833. DOI: 10.1021/acs.inorgchem.7b03236. View

5.
Kundu K, White J, Moehring S, Yu J, Ziller J, Furche F . A 9.2-GHz clock transition in a Lu(II) molecular spin qubit arising from a 3,467-MHz hyperfine interaction. Nat Chem. 2022; 14(4):392-397. DOI: 10.1038/s41557-022-00894-4. View