» Articles » PMID: 35211637

Rapid, Accurate Mapping of Transgene Integration in Viable Rhesus Macaque Embryos Using Enhanced-specificity Tagmentation-assisted PCR

Overview
Publisher Cell Press
Date 2022 Feb 25
PMID 35211637
Authors
Affiliations
Soon will be listed here.
Abstract

Genome engineering is a powerful tool for research and the creation of novel model organisms and has growing clinical applications. Randomly integrating vectors, such as lentivirus- or transposase-based methods, are simple and easy to use but carry risks arising from insertional mutagenesis. Here we present enhanced-specificity tagmentation-assisted PCR (esTag-PCR), a rapid and accurate method for mapping transgene integration and copy number. Using stably transfected HepG2 cells, we demonstrate that esTag-PCR has higher integration site detection accuracy and efficiency than alternative tagmentation-based methods. Next, we performed esTag-PCR on rhesus macaque embryos derived from zygotes injected with piggyBac transposase and transposon/transgene plasmid. Using low-input trophectoderm biopsies, we demonstrate that esTag-PCR accurately maps integration events while preserving blastocyst viability. We used these high-resolution data to evaluate the performance of piggyBac-mediated editing of rhesus macaque embryos, demonstrating that increased concentration of transposon/transgene plasmid can increase the fraction of embryos with stable integration; however, the number of integrations per embryo also increases, which may be problematic for some applications. Collectively, esTag-PCR represents an important improvement to the detection of transgene integration, provides a method to validate and screen edited embryos before implantation, and represents an important advance in the creation of transgenic animal models.

Citing Articles

Ultra-sensitive detection of transposon insertions across multiple families by transposable element display sequencing.

Vendrell-Mir P, Leduque B, Quadrana L Genome Biol. 2025; 26(1):48.

PMID: 40050910 PMC: 11887134. DOI: 10.1186/s13059-025-03512-x.


Liver-specific transgenic expression of human NTCP in rhesus macaques confers HBV susceptibility on primary hepatocytes.

Rust L, Wettengel J, Biswas S, Ryu J, Piekarski N, Yusova S Proc Natl Acad Sci U S A. 2025; 122(7):e2413771122.

PMID: 39937851 PMC: 11848295. DOI: 10.1073/pnas.2413771122.


Mage transposon: a novel gene delivery system for mammalian cells.

Tian J, Tong D, Li Z, Wang E, Yu Y, Lv H Nucleic Acids Res. 2024; 52(5):2724-2739.

PMID: 38300794 PMC: 10954464. DOI: 10.1093/nar/gkae048.


A Multifunctional and Highly Adaptable Reporter System for CRISPR/Cas Editing.

Wettengel J, Hansen-Palmus L, Yusova S, Rust L, Biswas S, Carson J Int J Mol Sci. 2023; 24(9).

PMID: 37175977 PMC: 10179647. DOI: 10.3390/ijms24098271.


Hepatitis B Virus Targets Lipid Transport Pathways to Infect Hepatocytes.

Esser K, Cheng X, Wettengel J, Lucifora J, Hansen-Palmus L, Austen K Cell Mol Gastroenterol Hepatol. 2023; 16(2):201-221.

PMID: 37054914 PMC: 10394270. DOI: 10.1016/j.jcmgh.2023.03.011.


References
1.
Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-60. PMC: 2705234. DOI: 10.1093/bioinformatics/btp324. View

2.
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen J . Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007; 35(Web Server issue):W71-4. PMC: 1933133. DOI: 10.1093/nar/gkm306. View

3.
Sakuma T, Barry M, Ikeda Y . Lentiviral vectors: basic to translational. Biochem J. 2012; 443(3):603-18. DOI: 10.1042/BJ20120146. View

4.
Li H, Durbin R . Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26(5):589-95. PMC: 2828108. DOI: 10.1093/bioinformatics/btp698. View

5.
Fueller J, Herbst K, Meurer M, Gubicza K, Kurtulmus B, Knopf J . CRISPR-Cas12a-assisted PCR tagging of mammalian genes. J Cell Biol. 2020; 219(6). PMC: 7265327. DOI: 10.1083/jcb.201910210. View