» Articles » PMID: 35172154

MiR-137 and MiR-122, Two Outer Subventricular Zone Non-coding RNAs, Regulate Basal Progenitor Expansion and Neuronal Differentiation

Overview
Journal Cell Rep
Publisher Cell Press
Date 2022 Feb 16
PMID 35172154
Authors
Affiliations
Soon will be listed here.
Abstract

Cortical expansion in primate brains relies on enlargement of germinal zones during a prolonged developmental period. Although most mammals have two cortical germinal zones, the ventricular zone (VZ) and subventricular zone (SVZ), gyrencephalic species display an additional germinal zone, the outer subventricular zone (oSVZ), which increases the number and diversity of neurons generated during corticogenesis. How the oSVZ emerged during evolution is poorly understood, but recent studies suggest a role for non-coding RNAs, which allow tight genetic program regulation during development. Here, using in vivo functional genetics, single-cell RNA sequencing, live imaging, and electrophysiology to assess progenitor and neuronal properties in mice, we identify two oSVZ-expressed microRNAs (miRNAs), miR-137 and miR-122, which regulate key cellular features of cortical expansion. miR-137 promotes basal progenitor self-replication and superficial layer neuron fate, whereas miR-122 decreases the pace of neuronal differentiation. These findings support a cell-type-specific role of miRNA-mediated gene expression in cortical expansion.

Citing Articles

Extracellular vesicles contribute to the beneficial effects of exercise training in APP/PS1 mice.

Fuller O, McLennan E, Egan C, Perera N, Terry L, Pyun J iScience. 2025; 28(2):111752.

PMID: 39898049 PMC: 11787611. DOI: 10.1016/j.isci.2025.111752.


miR-193b-365 microcluster downstream of coordinates neuron-subtype identity and dendritic morphology in cortical projection neurons.

Iyer A, Vaasjo L, Siththanandan V, K C R, Thurmon A, Akumuo M iScience. 2025; 27(12):111500.

PMID: 39759000 PMC: 11697703. DOI: 10.1016/j.isci.2024.111500.


Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting.

Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K Naunyn Schmiedebergs Arch Pharmacol. 2024; .

PMID: 39382681 DOI: 10.1007/s00210-024-03479-9.


Indirect neurogenesis in space and time.

Thor S Nat Rev Neurosci. 2024; 25(8):519-534.

PMID: 38951687 DOI: 10.1038/s41583-024-00833-x.


Uncovering novel therapeutic targets in glucose, nucleotides and lipids metabolism during cancer and neurological diseases.

Jovicic S Int J Immunopathol Pharmacol. 2024; 38:3946320241250293.

PMID: 38712748 PMC: 11080811. DOI: 10.1177/03946320241250293.


References
1.
Haubensak W, Attardo A, Denk W, Huttner W . Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A. 2004; 101(9):3196-201. PMC: 365766. DOI: 10.1073/pnas.0308600100. View

2.
Diaz J, Siththanandan V, Lu V, Gonzalez-Nava N, Pasquina L, MacDonald J . An evolutionarily acquired microRNA shapes development of mammalian cortical projections. Proc Natl Acad Sci U S A. 2020; 117(46):29113-29122. PMC: 7682328. DOI: 10.1073/pnas.2006700117. View

3.
Martinez-Martinez M, de Juan Romero C, Fernandez V, Cardenas A, Gotz M, Borrell V . A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nat Commun. 2016; 7:11812. PMC: 4897765. DOI: 10.1038/ncomms11812. View

4.
Moreau M, Bruse S, Jornsten R, Liu Y, Brzustowicz L . Chronological changes in microRNA expression in the developing human brain. PLoS One. 2013; 8(4):e60480. PMC: 3628885. DOI: 10.1371/journal.pone.0060480. View

5.
Picken Bahrey H, Moody W . Early development of voltage-gated ion currents and firing properties in neurons of the mouse cerebral cortex. J Neurophysiol. 2003; 89(4):1761-73. DOI: 10.1152/jn.00972.2002. View