» Articles » PMID: 35146399

Atypical TGF-β Signaling Controls Neuronal Guidance in

Overview
Journal iScience
Publisher Cell Press
Date 2022 Feb 11
PMID 35146399
Authors
Affiliations
Soon will be listed here.
Abstract

Coordinated expression of cell adhesion and signaling molecules is crucial for brain development. Here, we report that the transforming growth factor β (TGF-β) type I receptor SMA-6 (small-6) acts independently of its cognate TGF-β type II receptor DAF-4 (dauer formation-defective-4) to control neuronal guidance. SMA-6 directs neuronal development from the hypodermis through interactions with three, orphan, TGF-β ligands. Intracellular signaling downstream of SMA-6 limits expression of NLR-1, an essential Neurexin-like cell adhesion receptor, to enable neuronal guidance. Together, our data identify an atypical TGF-β-mediated regulatory mechanism to ensure correct neuronal development.

Citing Articles

TGF-β ligand cross-subfamily interactions in the response of Caenorhabditis elegans to a bacterial pathogen.

Ciccarelli E, Wing Z, Bendelstein M, Johal R, Singh G, Monas A PLoS Genet. 2024; 20(6):e1011324.

PMID: 38875298 PMC: 11210861. DOI: 10.1371/journal.pgen.1011324.


TGF-β pathways in aging and immunity: lessons from .

Yamamoto K, Savage-Dunn C Front Genet. 2023; 14:1220068.

PMID: 37732316 PMC: 10507863. DOI: 10.3389/fgene.2023.1220068.


Convergent Evolution in a Murine Intestinal Parasite Rapidly Created the TGM Family of Molecular Mimics to Suppress the Host Immune Response.

Maizels R, Newfeld S Genome Biol Evol. 2023; 15(9).

PMID: 37625791 PMC: 10516467. DOI: 10.1093/gbe/evad158.


TGF-β Ligand Cross-Subfamily Interactions in the Response of to Bacterial Pathogens.

Ciccarelli E, Wing Z, Bendelstein M, Johal R, Singh G, Monas A bioRxiv. 2023; .

PMID: 37215035 PMC: 10197529. DOI: 10.1101/2023.05.05.539606.


Evolution and Diversity of TGF-β Pathways are Linked with Novel Developmental and Behavioral Traits.

Lo W, Roca M, Dardiry M, Mackie M, Eberhardt G, Witte H Mol Biol Evol. 2022; 39(12).

PMID: 36469861 PMC: 9733428. DOI: 10.1093/molbev/msac252.


References
1.
. large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda). 2012; 2(11):1415-25. PMC: 3484672. DOI: 10.1534/g3.112.003830. View

2.
Liao Y, Smyth G, Shi W . featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013; 30(7):923-30. DOI: 10.1093/bioinformatics/btt656. View

3.
Haklai-Topper L, Soutschek J, Sabanay H, Scheel J, Hobert O, Peles E . The neurexin superfamily of Caenorhabditis elegans. Gene Expr Patterns. 2010; 11(1-2):144-50. DOI: 10.1016/j.gep.2010.10.008. View

4.
Tian C, Shi H, Xiong S, Hu F, Xiong W, Liu J . The neogenin/DCC homolog UNC-40 promotes BMP signaling via the RGM protein DRAG-1 in C. elegans. Development. 2013; 140(19):4070-80. PMC: 3775419. DOI: 10.1242/dev.099838. View

5.
Kinnunen T, Huang Z, Townsend J, Gatdula M, Brown J, Esko J . Heparan 2-O-sulfotransferase, hst-2, is essential for normal cell migration in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2005; 102(5):1507-12. PMC: 547812. DOI: 10.1073/pnas.0401591102. View