» Articles » PMID: 35115686

Noncoding Genetic Variation in GATA3 Increases Acute Lymphoblastic Leukemia Risk Through Local and Global Changes in Chromatin Conformation

Abstract

Inherited noncoding genetic variants confer significant disease susceptibility to childhood acute lymphoblastic leukemia (ALL) but the molecular processes linking germline polymorphisms with somatic lesions in this cancer are poorly understood. Through targeted sequencing in 5,008 patients, we identified a key regulatory germline variant in GATA3 associated with Philadelphia chromosome-like ALL (Ph-like ALL). Using CRISPR-Cas9 editing and samples from patients with Ph-like ALL, we showed that this variant activated a strong enhancer that upregulated GATA3 transcription. This, in turn, reshaped global chromatin accessibility and three-dimensional genome organization, including regions proximal to the ALL oncogene CRLF2. Finally, we showed that GATA3 directly regulated CRLF2 and potentiated the JAK-STAT oncogenic effects during leukemogenesis. Taken together, we provide evidence for a distinct mechanism by which a germline noncoding variant contributes to oncogene activation, epigenetic regulation and three-dimensional genome reprogramming.

Citing Articles

Pioneer factor GATA6 promotes colorectal cancer through 3D genome regulation.

Lyu H, Chen X, Cheng Y, Zhang T, Wang P, Wong J Sci Adv. 2025; 11(6):eads4985.

PMID: 39919174 PMC: 11804904. DOI: 10.1126/sciadv.ads4985.


Decoding the Implications of Zinc in the Development and Therapy of Leukemia.

Zhu B, Yang C, Hua S, Li K, Shang P, Li Z Adv Sci (Weinh). 2025; 12(9):e2412225.

PMID: 39887881 PMC: 11884550. DOI: 10.1002/advs.202412225.


Unveiling GATA3 Signaling Pathways in Health and Disease: Mechanisms, Implications, and Therapeutic Potential.

Bacha R, Alwisi N, Ismail R, Pedersen S, Al-Mansoori L Cells. 2025; 13(24.

PMID: 39768217 PMC: 11674286. DOI: 10.3390/cells13242127.


The BIM deletion polymorphism potentiates the survival of leukemia stem and progenitor cells and impairs response to targeted therapies.

Yu M, Nah G, Krishnan V, Sulaimi F, Ng K, Wang C Leukemia. 2024; 39(1):134-143.

PMID: 39438588 DOI: 10.1038/s41375-024-02418-0.


Oncogenic transcription factors instruct promoter-enhancer hubs in individual triple negative breast cancer cells.

Zhao J, Zhou Y, Tzelepis I, Burget N, Shi J, Faryabi R Sci Adv. 2024; 10(32):eadl4043.

PMID: 39110799 PMC: 11305386. DOI: 10.1126/sciadv.adl4043.


References
1.
Pui C, Yang J, Hunger S, Pieters R, Schrappe M, Biondi A . Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. J Clin Oncol. 2015; 33(27):2938-48. PMC: 4567699. DOI: 10.1200/JCO.2014.59.1636. View

2.
Hunger S, Mullighan C . Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015; 373(16):1541-52. DOI: 10.1056/NEJMra1400972. View

3.
Moriyama T, Relling M, Yang J . Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood. 2015; 125(26):3988-95. PMC: 4481591. DOI: 10.1182/blood-2014-12-580001. View

4.
Papaemmanuil E, Hosking F, Vijayakrishnan J, Price A, Olver B, Sheridan E . Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009; 41(9):1006-10. PMC: 4915548. DOI: 10.1038/ng.430. View

5.
Trevino L, Yang W, French D, Hunger S, Carroll W, Devidas M . Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009; 41(9):1001-5. PMC: 2762391. DOI: 10.1038/ng.432. View