» Articles » PMID: 35105355

Diagnostic Evidence GAuge of Single Cells (DEGAS): a Flexible Deep Transfer Learning Framework for Prioritizing Cells in Relation to Disease

Abstract

We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information "impressions," which allow individual cells to be associated with disease attributes like diagnosis, prognosis, and response to therapy. Using simulated data and ten diverse single-cell and patient bulk tissue transcriptomic datasets from glioblastoma multiforme (GBM), Alzheimer's disease (AD), and multiple myeloma (MM), we demonstrate the feasibility, flexibility, and broad applications of the DEGAS framework. DEGAS analysis on myeloma single-cell transcriptomics identified PHF19 myeloma cells associated with progression. Availability: https://github.com/tsteelejohnson91/DEGAS .

Citing Articles

Single-cell sequencing reveals the mechanisms of multiple myeloma progression: clarity or confusion?.

Xiang Y, Sun G, Tian L, Xiang P, Xie C Ann Hematol. 2025; .

PMID: 39918600 DOI: 10.1007/s00277-025-06241-0.


scPAS: single-cell phenotype-associated subpopulation identifier.

Xie A, Wang H, Zhao J, Wang Z, Xu J, Xu Y Brief Bioinform. 2024; 26(1).

PMID: 39681325 PMC: 11649301. DOI: 10.1093/bib/bbae655.


spatialGE Is a User-Friendly Web Application That Facilitates Spatial Transcriptomics Data Analysis.

Ospina O, Manjarres-Betancur R, Gonzalez-Calderon G, Soupir A, Smalley I, Tsai K Cancer Res. 2024; 85(5):848-858.

PMID: 39636739 PMC: 11873723. DOI: 10.1158/0008-5472.CAN-24-2346.


Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones.

Ianevski A, Nader K, Driva K, Senkowski W, Bulanova D, Moyano-Galceran L Nat Commun. 2024; 15(1):8579.

PMID: 39362905 PMC: 11450203. DOI: 10.1038/s41467-024-52980-5.


DrugReSC: targeting disease-critical cell subpopulations with single-cell transcriptomic data for drug repurposing in cancer.

Liu C, Zhang Y, Liang Y, Zhang T, Wang G Brief Bioinform. 2024; 25(6).

PMID: 39350337 PMC: 11442150. DOI: 10.1093/bib/bbae490.


References
1.
Edgar R, Domrachev M, Lash A . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2001; 30(1):207-10. PMC: 99122. DOI: 10.1093/nar/30.1.207. View

2.
Verhaak R, Hoadley K, Purdom E, Wang V, Qi Y, Wilkerson M . Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010; 17(1):98-110. PMC: 2818769. DOI: 10.1016/j.ccr.2009.12.020. View

3.
Zhang F, Wu Y, Tian W . A novel approach to remove the batch effect of single-cell data. Cell Discov. 2019; 5:46. PMC: 6796914. DOI: 10.1038/s41421-019-0114-x. View

4.
Gawel D, Serra-Musach J, Lilja S, Aagesen J, Arenas A, Asking B . A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Med. 2019; 11(1):47. PMC: 6664760. DOI: 10.1186/s13073-019-0657-3. View

5.
Grubman A, Chew G, Ouyang J, Sun G, Choo X, McLean C . A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation. Nat Neurosci. 2019; 22(12):2087-2097. DOI: 10.1038/s41593-019-0539-4. View