» Articles » PMID: 35078981

A Self-supervised Domain-general Learning Framework for Human Ventral Stream Representation

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jan 26
PMID 35078981
Authors
Affiliations
Soon will be listed here.
Abstract

Anterior regions of the ventral visual stream encode substantial information about object categories. Are top-down category-level forces critical for arriving at this representation, or can this representation be formed purely through domain-general learning of natural image structure? Here we present a fully self-supervised model which learns to represent individual images, rather than categories, such that views of the same image are embedded nearby in a low-dimensional feature space, distinctly from other recently encountered views. We find that category information implicitly emerges in the local similarity structure of this feature space. Further, these models learn hierarchical features which capture the structure of brain responses across the human ventral visual stream, on par with category-supervised models. These results provide computational support for a domain-general framework guiding the formation of visual representation, where the proximate goal is not explicitly about category information, but is instead to learn unique, compressed descriptions of the visual world.

Citing Articles

Individual variation in the functional lateralization of human ventral temporal cortex: Local competition and long-range coupling.

Blauch N, Plaut D, Vin R, Behrmann M Imaging Neurosci (Camb). 2025; 3.

PMID: 40078535 PMC: 11894816. DOI: 10.1162/imag_a_00488.


How Can Deep Neural Networks Inform Theory in Psychological Science?.

McGrath S, Russin J, Pavlick E, Feiman R Curr Dir Psychol Sci. 2025; 33(5):325-333.

PMID: 39949337 PMC: 11824574. DOI: 10.1177/09637214241268098.


Human-like face pareidolia emerges in deep neural networks optimized for face and object recognition.

Gupta P, Dobs K PLoS Comput Biol. 2025; 21(1):e1012751.

PMID: 39869654 PMC: 11790231. DOI: 10.1371/journal.pcbi.1012751.


A computational deep learning investigation of animacy perception in the human brain.

Duyck S, Costantino A, Bracci S, Op de Beeck H Commun Biol. 2024; 7(1):1718.

PMID: 39741161 PMC: 11688457. DOI: 10.1038/s42003-024-07415-8.


Teaching deep networks to see shape: Lessons from a simplified visual world.

Jarvers C, Neumann H PLoS Comput Biol. 2024; 20(11):e1012019.

PMID: 39527647 PMC: 11581402. DOI: 10.1371/journal.pcbi.1012019.


References
1.
Konkle T, Brady T, Alvarez G, Oliva A . Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. J Exp Psychol Gen. 2010; 139(3):558-78. PMC: 3398125. DOI: 10.1037/a0019165. View

2.
Solomon S, Schapiro A . Structure shapes the representation of a novel category. J Exp Psychol Learn Mem Cogn. 2023; 50(3):458-483. DOI: 10.1037/xlm0001257. View

3.
Bracci S, Ritchie J, Op de Beeck H . On the partnership between neural representations of object categories and visual features in the ventral visual pathway. Neuropsychologia. 2017; 105:153-164. PMC: 5680697. DOI: 10.1016/j.neuropsychologia.2017.06.010. View

4.
Lotter W, Kreiman G, Cox D . A neural network trained for prediction mimics diverse features of biological neurons and perception. Nat Mach Intell. 2021; 2(4):210-219. PMC: 8291226. DOI: 10.1038/s42256-020-0170-9. View

5.
Eickenberg M, Gramfort A, Varoquaux G, Thirion B . Seeing it all: Convolutional network layers map the function of the human visual system. Neuroimage. 2016; 152:184-194. DOI: 10.1016/j.neuroimage.2016.10.001. View