» Articles » PMID: 35061544

Fasting Improves Therapeutic Response in Hepatocellular Carcinoma Through P53-dependent Metabolic Synergism

Abstract

Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.

Citing Articles

Current hotspots and trends in cancer metabolic reprogramming: a scientometric analysis.

Yang S, Lin M, Hao S, Ye H, Zhang X Front Immunol. 2024; 15:1497461.

PMID: 39588377 PMC: 11586341. DOI: 10.3389/fimmu.2024.1497461.


Systemic and transcriptional response to intermittent fasting and fasting-mimicking diet in mice.

Michenthaler H, Duszka K, Reinisch I, Galhuber M, Moyschewitz E, Stryeck S BMC Biol. 2024; 22(1):268.

PMID: 39567986 PMC: 11580389. DOI: 10.1186/s12915-024-02061-2.


Mitochondrial metabolism: A moving target in hepatocellular carcinoma therapy.

Komza M, Chipuk J J Cell Physiol. 2024; 240(1):e31441.

PMID: 39324415 PMC: 11732733. DOI: 10.1002/jcp.31441.


Alpha lipoic acid diminishes migration and invasion in hepatocellular carcinoma cells through an AMPK-p53 axis.

Hidalgo F, Ferretti A, Etichetti C, Baffo E, Pariani A, Maknis T Sci Rep. 2024; 14(1):21275.

PMID: 39261583 PMC: 11390941. DOI: 10.1038/s41598-024-72309-y.


Suppression of neuronal CDK9/p53/VDAC signaling provides bioenergetic support and improves post-stroke neuropsychiatric outcomes.

Xia J, Zhang T, Sun Y, Huang Z, Shi D, Qin D Cell Mol Life Sci. 2024; 81(1):384.

PMID: 39235466 PMC: 11377386. DOI: 10.1007/s00018-024-05428-4.


References
1.
Grasmann G, Mondal A, Leithner K . Flexibility and Adaptation of Cancer Cells in a Heterogenous Metabolic Microenvironment. Int J Mol Sci. 2021; 22(3). PMC: 7867260. DOI: 10.3390/ijms22031476. View

2.
Shim H, Wei M, Brandhorst S, Longo V . Starvation promotes REV1 SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells. Cancer Res. 2015; 75(6):1056-67. PMC: 4359966. DOI: 10.1158/0008-5472.CAN-14-2249. View

3.
Shi X, Liu J, Ren L, Mao N, Tan F, Ding N . Nutlin-3 downregulates p53 phosphorylation on serine392 and induces apoptosis in hepatocellular carcinoma cells. BMB Rep. 2013; 47(4):221-6. PMC: 4163890. DOI: 10.5483/bmbrep.2014.47.4.146. View

4.
Kastenhuber E, Lowe S . Putting p53 in Context. Cell. 2017; 170(6):1062-1078. PMC: 5743327. DOI: 10.1016/j.cell.2017.08.028. View

5.
Tyanova S, Cox J . Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. Methods Mol Biol. 2018; 1711:133-148. DOI: 10.1007/978-1-4939-7493-1_7. View