» Articles » PMID: 32668195

Mitochondrial Metabolism As a Target for Cancer Therapy

Overview
Journal Cell Metab
Publisher Cell Press
Date 2020 Jul 16
PMID 32668195
Citations 273
Authors
Affiliations
Soon will be listed here.
Abstract

Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts.

Citing Articles

SLC25A35 enhances fatty acid oxidation and mitochondrial biogenesis to promote the carcinogenesis and progression of hepatocellular carcinoma by upregulating PGC-1α.

Yu H, Bai L, Jin L, Zhang Y, Xi Z, Wang D Cell Commun Signal. 2025; 23(1):130.

PMID: 40065301 PMC: 11895242. DOI: 10.1186/s12964-025-02109-y.


Renal-clearable and tumor-retained nanodots overcoming metabolic reprogramming to boost mitochondrial-targeted photodynamic therapy in triple-negative breast cancer.

Yao D, Wang Y, Dong X, Chen Y, Ji D, Zou R J Nanobiotechnology. 2025; 23(1):195.

PMID: 40059207 PMC: 11892270. DOI: 10.1186/s12951-025-03264-7.


AC129507.1 is a ferroptosis-related target identified by a novel mitochondria-related lncRNA signature that is involved in the tumor immune microenvironment in gastric cancer.

Yu S, Liang J, Liu L, Chen M, Chen C, Zhou D J Transl Med. 2025; 23(1):290.

PMID: 40050892 PMC: 11887229. DOI: 10.1186/s12967-025-06287-8.


A Novel Prognostic Signature of Mitophagy-Related E3 Ubiquitin Ligases in Breast Cancer.

Bian K, Yang C, Zhang F, Huang L Int J Mol Sci. 2025; 26(4).

PMID: 40004017 PMC: 11855622. DOI: 10.3390/ijms26041551.


Unlocking the future: mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response.

Tang Z, Pan Y, Li W, Ma R, Wang J Transl Cancer Res. 2025; 14(1):512-521.

PMID: 39974375 PMC: 11833377. DOI: 10.21037/tcr-24-1233.


References
1.
Zdralevic M, Brand A, Di Ianni L, Dettmer K, Reinders J, Singer K . Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism. J Biol Chem. 2018; 293(41):15947-15961. PMC: 6187639. DOI: 10.1074/jbc.RA118.004180. View

2.
Siegelin M, Dohi T, Raskett C, Orlowski G, Powers C, Gilbert C . Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J Clin Invest. 2011; 121(4):1349-60. PMC: 3069780. DOI: 10.1172/JCI44855. View

3.
Hirsch H, Iliopoulos D, Tsichlis P, Struhl K . Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009; 69(19):7507-11. PMC: 2756324. DOI: 10.1158/0008-5472.CAN-09-2994. View

4.
Bajzikova M, Kovarova J, Coelho A, Boukalova S, Oh S, Rohlenova K . Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metab. 2018; 29(2):399-416.e10. PMC: 7484595. DOI: 10.1016/j.cmet.2018.10.014. View

5.
Hahn A, Parey K, Bublitz M, Mills D, Zickermann V, Vonck J . Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology. Mol Cell. 2016; 63(3):445-56. PMC: 4980432. DOI: 10.1016/j.molcel.2016.05.037. View