» Articles » PMID: 35042880

Nuclear and Mitochondrial DNA Editing in Human Cells with Zinc Finger Deaminases

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jan 19
PMID 35042880
Authors
Affiliations
Soon will be listed here.
Abstract

Base editing in nuclear DNA and mitochondrial DNA (mtDNA) is broadly useful for biomedical research, medicine, and biotechnology. Here, we present a base editing platform, termed zinc finger deaminases (ZFDs), composed of custom-designed zinc-finger DNA-binding proteins, the split interbacterial toxin deaminase DddA, and a uracil glycosylase inhibitor (UGI), which catalyze targeted C-to-T base conversions without inducing unwanted small insertions and deletions (indels) in human cells. We assemble plasmids encoding ZFDs using publicly available zinc finger resources to achieve base editing at frequencies of up to 60% in nuclear DNA and 30% in mtDNA. Because ZFDs, unlike CRISPR-derived base editors, do not cleave DNA to yield single- or double-strand breaks, no unwanted indels caused by error-prone non-homologous end joining are produced at target sites. Furthermore, recombinant ZFD proteins, expressed in and purified from E. coli, penetrate cultured human cells spontaneously to induce targeted base conversions, demonstrating the proof-of-principle of gene-free gene therapy.

Citing Articles

Engineered mitochondria in diseases: mechanisms, strategies, and applications.

Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y Signal Transduct Target Ther. 2025; 10(1):71.

PMID: 40025039 PMC: 11873319. DOI: 10.1038/s41392-024-02081-y.


Mitochondrial base editing: from principle, optimization to application.

Tang J, Du K Cell Biosci. 2025; 15(1):9.

PMID: 39856740 PMC: 11762502. DOI: 10.1186/s13578-025-01351-8.


Nanoengineered mitochondria enable ocular mitochondrial disease therapy the replacement of dysfunctional mitochondria.

Wang Y, Liu N, Hu L, Yang J, Han M, Zhou T Acta Pharm Sin B. 2025; 14(12):5435-5450.

PMID: 39807326 PMC: 11725173. DOI: 10.1016/j.apsb.2024.08.007.


Mitochondrial diseases: from molecular mechanisms to therapeutic advances.

Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X Signal Transduct Target Ther. 2025; 10(1):9.

PMID: 39788934 PMC: 11724432. DOI: 10.1038/s41392-024-02044-3.


Advancing CRISPR base editing technology through innovative strategies and ideas.

Fan X, Lei Y, Wang L, Wu X, Li D Sci China Life Sci. 2024; 68(3):610-627.

PMID: 39231901 DOI: 10.1007/s11427-024-2699-5.


References
1.
Urnov F, Miller J, Lee Y, Beausejour C, Rock J, Augustus S . Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005; 435(7042):646-51. DOI: 10.1038/nature03556. View

2.
Kim H, Kim J . A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014; 15(5):321-34. DOI: 10.1038/nrg3686. View

3.
Gonzalez B, Schwimmer L, Fuller R, Ye Y, Asawapornmongkol L, Barbas 3rd C . Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc. 2010; 5(4):791-810. PMC: 2855653. DOI: 10.1038/nprot.2010.34. View

4.
Miller J, Tan S, Qiao G, Barlow K, Wang J, Xia D . A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2010; 29(2):143-8. DOI: 10.1038/nbt.1755. View

5.
Kosicki M, Tomberg K, Bradley A . Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018; 36(8):765-771. PMC: 6390938. DOI: 10.1038/nbt.4192. View