» Articles » PMID: 35023730

GAMES: A Dynamic Model Development Workflow for Rigorous Characterization of Synthetic Genetic Systems

Overview
Journal ACS Synth Biol
Date 2022 Jan 13
PMID 35023730
Authors
Affiliations
Soon will be listed here.
Abstract

Mathematical modeling is invaluable for advancing understanding and design of synthetic biological systems. However, the model development process is complicated and often unintuitive, requiring iteration on various computational tasks and comparisons with experimental data. model development can pose a barrier to reproduction and critical analysis of the development process itself, reducing the potential impact and inhibiting further model development and collaboration. To help practitioners manage these challenges, we introduce the Generation and Analysis of Models for Exploring Synthetic Systems (GAMES) workflow, which includes both automated and human-in-the-loop processes. We systematically consider the process of developing dynamic models, including model formulation, parameter estimation, parameter identifiability, experimental design, model reduction, model refinement, and model selection. We demonstrate the workflow with a case study on a chemically responsive transcription factor. The generalizable workflow presented in this tutorial can enable biologists to more readily build and analyze models for various applications.

Citing Articles

Developing, Characterizing, and Modeling CRISPR-Based Point-of-Use Pathogen Diagnostics.

Jung J, Dreyer K, Dray K, Muldoon J, George J, Shirman S ACS Synth Biol. 2024; 14(1):129-147.

PMID: 39670656 PMC: 11744932. DOI: 10.1021/acssynbio.4c00469.


Developing, characterizing and modeling CRISPR-based point-of-use pathogen diagnostics.

Jung J, Dreyer K, Dray K, Muldoon J, George J, Shirman S bioRxiv. 2024; .

PMID: 39005318 PMC: 11244977. DOI: 10.1101/2024.07.03.601853.


Investigating and Modeling the Factors That Affect Genetic Circuit Performance.

Zilberzwige-Tal S, Fontanarrosa P, Bychenko D, Dorfan Y, Gazit E, Myers C ACS Synth Biol. 2023; 12(11):3189-3204.

PMID: 37916512 PMC: 10661042. DOI: 10.1021/acssynbio.3c00151.


Teaching systematic, reproducible model development using synthetic biology.

Dray K, Dreyer K, Lucks J, Leonard J Chem Eng Educ. 2023; 57(3):124-130.

PMID: 37869416 PMC: 10588546. DOI: 10.18260/2-1-370.660-132665.

References
1.
Joubert D, Stigter J, Molenaar J . An efficient procedure to assist in the re-parametrization of structurally unidentifiable models. Math Biosci. 2020; 323:108328. DOI: 10.1016/j.mbs.2020.108328. View

2.
Stadter P, Schalte Y, Schmiester L, Hasenauer J, Stapor P . Benchmarking of numerical integration methods for ODE models of biological systems. Sci Rep. 2021; 11(1):2696. PMC: 7846608. DOI: 10.1038/s41598-021-82196-2. View

3.
di Bernardo D, Marucci L, Menolascina F, Siciliano V . Predicting synthetic gene networks. Methods Mol Biol. 2011; 813:57-81. PMC: 7120583. DOI: 10.1007/978-1-61779-412-4_4. View

4.
Jones R, Qian Y, Siciliano V, DiAndreth B, Huh J, Weiss R . An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. Nat Commun. 2020; 11(1):5690. PMC: 7656454. DOI: 10.1038/s41467-020-19126-9. View

5.
Frei T, Cella F, Tedeschi F, Gutierrez J, Stan G, Khammash M . Characterization and mitigation of gene expression burden in mammalian cells. Nat Commun. 2020; 11(1):4641. PMC: 7492461. DOI: 10.1038/s41467-020-18392-x. View