» Articles » PMID: 32853539

Best Practices for Making Reproducible Biochemical Models

Overview
Journal Cell Syst
Publisher Cell Press
Date 2020 Aug 28
PMID 32853539
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Like many scientific disciplines, dynamical biochemical modeling is hindered by irreproducible results. This limits the utility of biochemical models by making them difficult to understand, trust, or reuse. We comprehensively list the best practices that biochemical modelers should follow to build reproducible biochemical model artifacts-all data, model descriptions, and custom software used by the model-that can be understood and reused. The best practices provide advice for all steps of a typical biochemical modeling workflow in which a modeler collects data; constructs, trains, simulates, and validates the model; uses the predictions of a model to advance knowledge; and publicly shares the model artifacts. The best practices emphasize the benefits obtained by using standard tools and formats and provides guidance to modelers who do not or cannot use standards in some stages of their modeling workflow. Adoption of these best practices will enhance the ability of researchers to reproduce, understand, and reuse biochemical models.

Citing Articles

From FAIR to CURE: Guidelines for Computational Models of Biological Systems.

Sauro H, Agmon E, Blinov M, Gennari J, Hellerstein J, Heydarabadipour A ArXiv. 2025; .

PMID: 40034129 PMC: 11875277.


MDverse, shedding light on the dark matter of molecular dynamics simulations.

Tiemann J, Szczuka M, Bouarroudj L, Oussaren M, Garcia S, Howard R Elife. 2024; 12.

PMID: 39212001 PMC: 11364437. DOI: 10.7554/eLife.90061.


Pathways to a Shiny Future: Building the Foundation for Computational Physical Chemistry and Biophysics in 2050.

Biriukov D, Vacha R ACS Phys Chem Au. 2024; 4(4):302-313.

PMID: 39069976 PMC: 11274290. DOI: 10.1021/acsphyschemau.4c00003.


SBcoyote: An Extensible Python-Based Reaction Editor and Viewer.

Xu J, Geng G, Nguyen N, Perena-Cortes C, Samuels C, Sauro H ArXiv. 2023; .

PMID: 37645048 PMC: 10462178.


Adapting modeling and simulation credibility standards to computational systems biology.

Tatka L, Smith L, Hellerstein J, Sauro H J Transl Med. 2023; 21(1):501.

PMID: 37496031 PMC: 10369698. DOI: 10.1186/s12967-023-04290-5.


References
1.
Waltemath D, Wolkenhauer O . How Modeling Standards, Software, and Initiatives Support Reproducibility in Systems Biology and Systems Medicine. IEEE Trans Biomed Eng. 2016; 63(10):1999-2006. DOI: 10.1109/TBME.2016.2555481. View

2.
Watanabe L, Nguyen T, Zhang M, Zundel Z, Zhang Z, Madsen C . iBioSim 3: A Tool for Model-Based Genetic Circuit Design. ACS Synth Biol. 2018; 8(7):1560-1563. DOI: 10.1021/acssynbio.8b00078. View

3.
Raue A, Steiert B, Schelker M, Kreutz C, Maiwald T, Hass H . Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems. Bioinformatics. 2015; 31(21):3558-60. DOI: 10.1093/bioinformatics/btv405. View

4.
Lubitz T, Hahn J, Bergmann F, Noor E, Klipp E, Liebermeister W . SBtab: a flexible table format for data exchange in systems biology. Bioinformatics. 2016; 32(16):2559-61. PMC: 4978929. DOI: 10.1093/bioinformatics/btw179. View

5.
Lang P, Chebaro Y, Zheng X, Sekar J, Shaikh B, Natale D . BpForms and BcForms: a toolkit for concretely describing non-canonical polymers and complexes to facilitate global biochemical networks. Genome Biol. 2020; 21(1):117. PMC: 7236495. DOI: 10.1186/s13059-020-02025-z. View