» Articles » PMID: 34965247

Patient-derived IPSCs Link Elevated Mitochondrial Respiratory Complex I Function to Osteosarcoma in Rothmund-Thomson Syndrome

Abstract

Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.

Citing Articles

Osteosarcoma: A comprehensive review of model systems and experimental therapies.

Robbins G, Vue Y, Rahrmann E, Moriarity B Med Res Arch. 2025; 12(11).

PMID: 39916749 PMC: 11801376. DOI: 10.18103/mra.v12i11.6000.


Decoding cancer etiology with cellular reprogramming.

Huang M, Fisher M, Phan T, Zhao R, Lee D Curr Opin Genet Dev. 2024; 90:102301.

PMID: 39721322 PMC: 11830421. DOI: 10.1016/j.gde.2024.102301.


DLX2 promotes osteosarcoma epithelial-mesenchymal transition and doxorubicin resistance by enhancing HOXC8-CDH2 axis.

Zhang B, Du X, Fan Y, Qu G, Pang L, Zhao R iScience. 2023; 26(11):108272.

PMID: 38026218 PMC: 10651674. DOI: 10.1016/j.isci.2023.108272.


Preclinical Models of Visceral Sarcomas.

Costa A, Gozzellino L, Nannini M, Astolfi A, Pantaleo M, Pasquinelli G Biomolecules. 2023; 13(11).

PMID: 38002306 PMC: 10669128. DOI: 10.3390/biom13111624.


Unveiling the prognostic implications of RPLP1 upregulation in osteosarcoma.

Du X, Wei H, Zhang B, Pang L, Zhao R, Zhang X Am J Cancer Res. 2023; 13(10):4822-4831.

PMID: 37970363 PMC: 10636679.


References
1.
Zhao Q, Gregory C, Lee R, Reger R, Qin L, Hai B . MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs. Proc Natl Acad Sci U S A. 2014; 112(2):530-5. PMC: 4299223. DOI: 10.1073/pnas.1423008112. View

2.
Pavlova N, Thompson C . The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016; 23(1):27-47. PMC: 4715268. DOI: 10.1016/j.cmet.2015.12.006. View

3.
Lee D, Su J, Ang Y, Carvajal-Vergara X, Mulero-Navarro S, Pereira C . Regulation of embryonic and induced pluripotency by aurora kinase-p53 signaling. Cell Stem Cell. 2012; 11(2):179-94. PMC: 3413175. DOI: 10.1016/j.stem.2012.05.020. View

4.
Fang H, Niu K, Mo D, Zhu Y, Tan Q, Wei D . RecQL4-Aurora B kinase axis is essential for cellular proliferation, cell cycle progression, and mitotic integrity. Oncogenesis. 2018; 7(9):68. PMC: 6134139. DOI: 10.1038/s41389-018-0080-4. View

5.
Wang L, Gannavarapu A, Kozinetz C, Levy M, Lewis R, Chintagumpala M . Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst. 2003; 95(9):669-74. DOI: 10.1093/jnci/95.9.669. View