» Articles » PMID: 34862761

Reversible Kinetic Trapping of FUS Biomolecular Condensates

Overview
Journal Adv Sci (Weinh)
Date 2021 Dec 4
PMID 34862761
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Formation of membrane-less organelles by self-assembly of disordered proteins can be triggered by external stimuli such as pH, salt, or temperature. These organelles, called biomolecular condensates, have traditionally been classified as liquids, gels, or solids with limited subclasses. Here, the authors show that a thermal trigger can lead to formation of at least two distinct liquid condensed phases of the fused in sarcoma low complexity (FUS LC) domain. Forming FUS LC condensates directly at low temperature leads to formation of metastable, kinetically trapped condensates that show arrested coalescence, escape from which to untrapped condensates can be achieved via thermal annealing. Using experimental and computational approaches, the authors find that molecular structure of interfacial FUS LC in kinetically trapped condensates is distinct (more β-sheet like) compared to untrapped FUS LC condensates. Moreover, molecular motion within kinetically trapped condensates is substantially slower compared to that in untrapped condensates thereby demonstrating two unique liquid FUS condensates. Controlling condensate thermodynamic state, stability, and structure with a simple thermal switch may contribute to pathological protein aggregate stability and provides a facile method to trigger condensate mixing for biotechnology applications.

Citing Articles

Benchmarking residue-resolution protein coarse-grained models for simulations of biomolecular condensates.

Feito A, Sanchez-Burgos I, Tejero I, Sanz E, Rey A, Collepardo-Guevara R PLoS Comput Biol. 2025; 21(1):e1012737.

PMID: 39804953 PMC: 11844903. DOI: 10.1371/journal.pcbi.1012737.


Nonequilibrium phases of a biomolecular condensate facilitated by enzyme activity.

Coupe S, Fakhri N bioRxiv. 2024; .

PMID: 39149291 PMC: 11326260. DOI: 10.1101/2024.08.11.607499.


Fundamental Aspects of Phase-Separated Biomolecular Condensates.

Zhou H, Kota D, Qin S, Prasad R Chem Rev. 2024; 124(13):8550-8595.

PMID: 38885177 PMC: 11260227. DOI: 10.1021/acs.chemrev.4c00138.


A solid beta-sheet structure is formed at the surface of FUS droplets during aging.

Emmanouilidis L, Bartalucci E, Kan Y, Ijavi M, Perez M, Afanasyev P Nat Chem Biol. 2024; 20(8):1044-1052.

PMID: 38467846 PMC: 11288893. DOI: 10.1038/s41589-024-01573-w.


Liquid-Liquid Phase Separation of the Intrinsically Disordered Domain of the Fused in Sarcoma Protein Results in Substantial Slowing of Hydration Dynamics.

Krevert C, Chavez D, Chatterjee S, Stelzl L, Putz S, Roeters S J Phys Chem Lett. 2023; 14(49):11224-11234.

PMID: 38056002 PMC: 10726384. DOI: 10.1021/acs.jpclett.3c02790.


References
1.
Dutta N, Truong M, Mayavan S, Choudhury N, Elvin C, Kim M . A genetically engineered protein responsive to multiple stimuli. Angew Chem Int Ed Engl. 2011; 50(19):4428-31. DOI: 10.1002/anie.201007920. View

2.
Blocher W, Perry S . Complex coacervate-based materials for biomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016; 9(4). DOI: 10.1002/wnan.1442. View

3.
Harrison A, Shorter J . RNA-binding proteins with prion-like domains in health and disease. Biochem J. 2017; 474(8):1417-1438. PMC: 5639257. DOI: 10.1042/BCJ20160499. View

4.
Wirtz D . Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys. 2009; 38:301-26. DOI: 10.1146/annurev.biophys.050708.133724. View

5.
Footer M, Lyo J, Theriot J . Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization. J Biol Chem. 2008; 283(35):23852-62. PMC: 2527104. DOI: 10.1074/jbc.M803448200. View