» Articles » PMID: 27545621

ALS Mutations Disrupt Phase Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain

Overview
Journal Structure
Publisher Cell Press
Date 2016 Aug 23
PMID 27545621
Citations 411
Authors
Affiliations
Soon will be listed here.
Abstract

RNA-binding protein TDP-43 mediates essential RNA processing but forms cytoplasmic neuronal inclusions via its C-terminal domain (CTD) in amyotrophic lateral sclerosis (ALS). It remains unclear if aggregated TDP-43 is neurotoxic and if ∼50 ALS-associated missense mutations in TDP-43 CTD promote aggregation, or if loss of normal function plays a role in disease. Recent work points to the ability of related proteins to assemble into functional phase-separated ribonucleoprotein granules via their structurally disordered prion-like domains. Here, we provide atomic details on the structure and assembly of the low-complexity CTD of TDP-43 into liquid-liquid phase-separated in vitro granules and demonstrate that ALS-associated variants disrupt interactions within granules. Using nuclear magnetic resonance spectroscopy, simulation, and microscopy, we find that a subregion cooperatively but transiently folds into a helix that mediates TDP-43 phase separation. ALS-associated mutations disrupt phase separation by inhibiting interaction and helical stabilization. Therefore, ALS-associated mutations can disrupt TDP-43 interactions, affecting function beyond encouraging aggregation.

Citing Articles

TDP-43 Aggregate Seeding Impairs Autoregulation and Causes TDP-43 Dysfunction.

Mamede L, Hu M, Titus A, Vaquer-Alicea J, French R, Diamond M bioRxiv. 2025; .

PMID: 39990366 PMC: 11844547. DOI: 10.1101/2025.02.11.637743.


The Regulation of TDP-43 Structure and Phase Transitions: A Review.

Liu Y, Xiang J, Gong H, Yu T, Gao M, Huang Y Protein J. 2025; .

PMID: 39987392 DOI: 10.1007/s10930-025-10261-0.


Small heat shock protein HSPB8 interacts with a pre-fibrillar TDP43 low complexity domain species to delay fibril formation.

Jami K, Farb D, Osumi K, Shafer C, Criscione S, Murray D bioRxiv. 2025; .

PMID: 39974920 PMC: 11838303. DOI: 10.1101/2025.01.28.635368.


Native Mass Spectrometry Captures the Conformational Plasticity of Proteins with Low-Complexity Domains.

Osterholz H, Stevens A, Abramsson M, Lama D, Brackmann K, Rising A JACS Au. 2025; 5(1):281-290.

PMID: 39886581 PMC: 11775691. DOI: 10.1021/jacsau.4c00961.


TDP-43 nuclear retention is antagonized by hypo-phosphorylation of its C-terminus in the cytoplasm.

Rabhi C, Babault N, Martin C, Desforges B, Maucuer A, Joshi V Commun Biol. 2025; 8(1):136.

PMID: 39875548 PMC: 11775348. DOI: 10.1038/s42003-025-07456-7.


References
1.
Buratti E, Dork T, Zuccato E, Pagani F, Romano M, Baralle F . Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 2001; 20(7):1774-84. PMC: 145463. DOI: 10.1093/emboj/20.7.1774. View

2.
Wang C, Grey M, Palmer 3rd A . CPMG sequences with enhanced sensitivity to chemical exchange. J Biomol NMR. 2002; 21(4):361-6. DOI: 10.1023/a:1013328206498. View

3.
Wang Y, Jardetzky O . Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci. 2002; 11(4):852-61. PMC: 2373532. DOI: 10.1110/ps.3180102. View

4.
Zhang H, Neal S, Wishart D . RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR. 2003; 25(3):173-95. DOI: 10.1023/a:1022836027055. View

5.
Ayala Y, Pantano S, DAmbrogio A, Buratti E, Brindisi A, Marchetti C . Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol. 2005; 348(3):575-88. DOI: 10.1016/j.jmb.2005.02.038. View